We compute for the side lengths using the distance formula √[(x₂-x₁)²+(y₂-y₁)²].
AB = √[(-7--5)²+(4-7)²] = √13
A'B' = √[(-9--7)²+(0-3)²] = √13
BC = √[(-5--3)²+(7-4)²] = √13
B'C' = √[(-7--5)²+(3-0)²] =√13
CD = √[(-3--5)²+(4-1)²] = √13
C'D' = √[(-5--7)²+(0--3)²] = √13
DA = √[(-5--7)²+(1-4)²] = √13
D'A' = √[(-7--9)²+(-3-0)²] = √13
The two polygons are squares with the same side lengths.
But this is not enough information to support the argument that the two figures are congruent. In order for the two to be congruent, they must satisfy all conditions:
1. They have the same number of sides.
2. All the corresponding sides have equal length.
3. All the corresponding interior angles have the same measurements.
The third condition was not proven.
Check the picture below.
so, a cone, that fits inside the cylinder, will have the same height "h" and radius "r". Thus
D) 12 would NOT be a possible length for the third side because the sum of the 2 shorter legs should be greater than the longest leg.