Answer:
= 99 Ω
= 2.3094 Ω
P(98<R<102) = 0.5696
Step-by-step explanation:
The mean resistance is the average of edge values of interval.
Hence,
The mean resistance,
= 99 Ω
To find the standard deviation of resistance, we need to find variance first.

Hence,
The standard deviation of resistance,
= 2.3094 Ω
To calculate the probability that resistance is between 98 Ω and 102 Ω, we need to find Normal Distributions.


From the Z-table, P(98<R<102) = 0.9032 - 0.3336 = 0.5696
Answer:
triangle
Step-by-step explanation:
y2-y1 -8-24 -32 -1*2*2*2*4 16
M= --------- = ----------- = ------ = --------------- = ------
x2-x1 16-(-18) -2 -1*2 1
Answer:

Step-by-step explanation:
Given △KMN, ABCD is a square where KN=a, MP⊥KN, MP=h.
we have to find the length of AB.
Let the side of square i.e AB is x units.
As ADCB is a square ⇒ ∠CDN=90°⇒∠CDP=90°
⇒ CP||MP||AB
In ΔMNP and ΔCND
∠NCD=∠NMP (∵ corresponding angles)
∠NDC=∠NPM (∵ corresponding angles)
By AA similarity rule, ΔMNP~ΔCND
Also, ΔKAP~ΔKPM by similarity rule as above.
Hence, corresponding sides are in proportion



Adding above two, we get

⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
1/4 I think because you would limit the eights