So this problem is asking you to plug numbers in for t. 0 1 2 3 4 5. So your first equation would be 2× 0+8 and you would get 8 so for 0 toppings you would pay 8 dollars then graph this over 0 up 8. Next equation 2×1+8 is 10. Graph. over 1 up 10. Next 2×2+8 is 12. Graph. Over 2 up 12. next 2× 3 + 8 is 14. Graph. Over 3 up 14. Next 2×4+8 is 16 so over 4 up 16. Last 2×5+8 is 18 so over 5 up 18. Your Y-intercept is the dot that is on the y axis and in this problem that is 8. This means if you buy 0 toppings you will spend 8 dollars.
Speed=distance/time
suppose the distance of the first day is d, and the time is t
distance of the second day: d+0.17d=1.17d
time of the second day: t+0.2t=1.2t
speed of the second day: 1.17d/1.2t=0.975(d/t)=(1-0.025)(d/t)
so the speed of the second day is 2.5% slower than the first day.
I think it's 2.2. I apologize if it's incorrect
Answer:
a) what is the probability that Neither will of these products launch ?
= 0.30
b) At least one product will be launched ?
= 0.70
Step-by-step explanation:
From the above question, we have the following information:
P(A) = 0.45
P(B) = 0.60
P(A ∩ B) = P(A and B) launching = 0.35
Step 1
We find the Probability that A or B will launch
P (A ∪ B) = P(A) + P(B) - P(A ∩ B)
= 0.60 + 0.45 - 0.35
= 1.05 - 0.35
= 0.70
a) what is the probability that Neither will of these products launch ?
1 - Probability ( A or B will launch)
= 1 - 0.70
= 0.30
b)At least one product will be launched?
This is equivalent to the probability that A or B will be launched
P (A ∪ B) = P(A) + P(B) - P(A ∩ B)
= 0.60 + 0.45 - 0.35
= 1.05 - 0.35
= 0.70