The common ratio of the given geometric sequence is the number that is multiplied to the first term in order to get the second term. Consequently, this is also the number multiplied to the second term to get the third term. This cycle goes on and on until a certain term is acquired. In this item, the common ratio r is,
r = t⁵/t⁸ = t²/t⁵
The answer, r = t⁻³.
The next three terms are,
n₄ = (t²)(t⁻³) = t⁻¹
n₅ = (t⁻¹)(t⁻³) = t⁻⁴
n₆ = (t⁻⁴)(t⁻³) = t⁻⁷
The answers for the next three terms are as reflected above as n₄, n₅, and n₆, respectively.
Answer:
i think the first and last one.
Step-by-step explanation:
Here it is! Have a nice day. :)
The given equation is: 
To find the line perpendicular to it, we interchange coefficients and switch the signs of one coefficient.
The equation to a line perpendicular to it is:
$ 2y-x=c$
where, $c$ is some constant we have determine using the condition given.
It passes through $(2,-1)$
Put the point in our equation:
$2(-1)-(2)=c$
$c=-2-2$
$c=-4$
The final equation is:
$\boxed{ 2y-x=-4}$