Answer:
<em>- 7n ≤ 77</em>
Step-by-step explanation:
<em>- 7n ≤ 77</em>
n ≥ - 11
Answer:
n squared + 3n + 1
Step-by-step explanation:
5,11,19,29
Firstly look at the difference between each number. The first difference is 6 then 8 then 10 etc. After that you look at your created sequence - 6,8,10 etc. The difference is 2 each time. Then applying rules, you have to do the constant difference divided by 2 to get a coefficient of n squared. So in this case it's n squared because 2/2 = 1 so you don't have to place a 1 in front of the n squared. After you create a sequence from the n squared. That would be 1,4,9 etc. Then you need to see how to get from the sequence: 1,4,9 etc to your original sequence: 5,11,19 etc. So if you calculate it you will get 4,7,10 because firstly 5-1 = 4 then 11-4 = 7 etc. The sequence 4,7,10 is a linear sequence so the constant difference is 3 each time. So to get a nth term of a linear sequence you will start off as 3n then you will substitute 1 then 2 then 3 into the 3n. Therefore that would be 3,6 etc. So if you take the first substituted term, that would be 3 as said before then you will have to see how to get from the 3 to 4 so that is just adding 1. So the nth term of this linear sequence is 3n + 1. Check if it works at the end. So the overall nth term of the quadratic sequence is n squared as said before + 3n + 1.
Answer:
1.) 6
2.)6
3,)4
Step-by-step explanation:
I think these are the gcf of the numbers
The correct answer for this question is this one: "B. increase your scale values"
<span>When creating a scatterplot, if the points are too close together to see the relationship, You adjust your graph by </span><em>increasing your scale values</em>
Hope this helps answer your question and have a nice day ahead.