D would be the most correct of the answer choices
Answer:
the probability is P=0.012 (1.2%)
Step-by-step explanation:
for the random variable X= weight of checked-in luggage, then if X is approximately normal . then the random variable X₂ = weight of N checked-in luggage = ∑ Xi , distributes normally according to the central limit theorem.
Its expected value will be:
μ₂ = ∑ E(Xi) = N*E(Xi) = 121 seats * 68 lbs/seat = 8228 lbs
for N= 121 seats and E(Xi) = 68 lbs/person* 1 person/seat = 68 lbs/seat
the variance will be
σ₂² = ∑ σ² (Xi)= N*σ²(Xi) → σ₂ = σ *√N = 11 lbs/seat *√121 seats = 121 Lbs
then the standard random variable Z
Z= (X₂- μ₂)/σ₂ =
Zlimit= (8500 Lbs - 8228 lbs)/121 Lbs = 2.248
P(Z > 2.248) = 1- P(Z ≤ 2.248) = 1 - 0.988 = 0.012
P(Z > 2.248)= 0.012
then the probability that on a randomly selected full flight, the checked-in luggage capacity will be exceeded is P(Z > 2.248)= 0.012 (1.2%)
X-7 - -2x-5
answer is 2/3
X-7 + 2X= -2x-5+2x
3x-7= -5
3x-7+7= -5+7 (getting x alone)
3x=2
divide by 3 to get x
3x/3 =2/3
x=2/3
Answer:
10 growth per 1000.
Step-by-step explanation:
Given,
Rate of birth = 30 births per 1000
Rate of death = 20 deaths per 1000
As the growth in population is the difference in the number of the child take birth and the person die.
As we are calculating the rate of birth and rate of growth in per thousands of members, so the growth rate will be also in per thousands.
As we can see on every one thousand people,
total birth = 30
total death = 20
so, total growth = total birth - total growth
= 30 - 20
= 10
As at every 1000 persons, there are 10 persons survive, so the rate of growth will be 10 growth per 1000.
Answer:
Step-by-step explanation:
2.45 m in inches = 96.457 in. 2.45 meters to inches = 96.457″. To convert 2.45 meters to inches you have to divide the length expressed in the base unit of length in the International System (SI) of Units by 0.0254 .25.4Centimeters