Answer:
.
For values of x>0, it can be rewritten as ![\\ 2ln(x) - ln(x^2 + 1).](https://tex.z-dn.net/?f=%20%5C%5C%202ln%28x%29%20-%20ln%28x%5E2%20%2B%201%29.%20)
Step-by-step explanation:
For the expression:
![\\ ln(\frac{x^2}{x^2 + 1})](https://tex.z-dn.net/?f=%20%5C%5C%20ln%28%5Cfrac%7Bx%5E2%7D%7Bx%5E2%20%2B%201%7D%29%20)
We can apply this logarithmical property: ![\\ ln(\frac{x}{y}) = ln(x) - ln(y).](https://tex.z-dn.net/?f=%20%5C%5C%20ln%28%5Cfrac%7Bx%7D%7By%7D%29%20%3D%20ln%28x%29%20-%20ln%28y%29.%20)
Then,
![\\ \frac{x^2}{x^2 + 1} = ln(x^2) - ln(x^2 + 1).](https://tex.z-dn.net/?f=%20%5C%5C%20%5Cfrac%7Bx%5E2%7D%7Bx%5E2%20%2B%201%7D%20%3D%20ln%28x%5E2%29%20-%20ln%28x%5E2%20%2B%201%29.%20)
If we assume values of <em>x </em>> 0 (non negative values for x), then the expression could be rewritten as follows:
, since ![\\ ln(x^{n}) = n*ln(x).](https://tex.z-dn.net/?f=%20%5C%5C%20ln%28x%5E%7Bn%7D%29%20%3D%20n%2Aln%28x%29.%20)
We have to remember that <em>domain</em> (all possible values x) for logarithmic function is for all x > 0, or mathematically expressed as:
Domain: ![\\ {x | x \in R, x > 0}](https://tex.z-dn.net/?f=%20%5C%5C%20%7Bx%20%7C%20x%20%5Cin%20R%2C%20x%20%3E%200%7D%20)
Answer:
![x \leqslant - 3](https://tex.z-dn.net/?f=x%20%5Cleqslant%20%20-%203)
Step-by-step explanation:
i don't have time to do the line srry hope this helped
Answer:
The top box in the middle, should be 15.
The bottom box on the left should be 1.5
B,C,D are all equivalent.
Answer: The answer is 14
So u take the 58 to the other side and it becomes -58 so subtract 72-58 and you will get the answer for g