Step-by-step explanation:
this is how you solve it :)
Answer:
Given the mean = 205 cm and standard deviation as 7.8cm
a. To calculate the probability that an individual distance is greater than 218.4 cm, we subtract the probability of the distance given (i.e 218.4 cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) from 1. Therefore, we have 1- P(Z). Using the Z distribution table we have 1-0.9573. Therefore P(X >218.4)= 0.0427.
b. To calculate the probability that mean of 15 (i.e n=15) randomly selected distances is greater than 202.8, we subtract the probability of the distance given (i.e 202.8cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) divided by the square root of mean (i.e n= 15) from 1. Therefore, we have 1- P(Z). Using the Z distribution table we have 1-0.1378. Therefore P(X >202.8)= 0.8622.
c. This will also apply to a normally distributed data even if it is not up to the sample size of 30 since the sample distribution is not a skewed one.
Step-by-step explanation:
Given the mean = 205 cm and standard deviation as 7.8cm
a. To calculate the probability that an individual distance is greater than 218.4 cm, we subtract the probability of the distance given (i.e 218.4 cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) from 1. Therefore, we have 1- P(Z). Using the Z distribution table we have 1-0.9573. Therefore P(X >218.4)= 0.0427.
b. To calculate the probability that mean of 15 (i.e n=15) randomly selected distances is greater than 202.8, we subtract the probability of the distance given (i.e 202.8cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) divided by the square root of mean (i.e n= 15) from 1. Therefore, we have 1- P(Z). Using the Z distribution table we have 1-0.1378. Therefore P(X >202.8)= 0.8622.
c. This will also apply to a normally distributed data even if it is not up to the sample size of 30 since the sample distribution is not a skewed one.
Answer:
72
Step-by-step explanation:
The pythagorean theorem states that in a right triangle A^2 + B^2 = C^2 where A and B are the two smaller sides and C is the hypotenuse.
Because of this, in this triangle 30^2 + B^2 = 78^2
Which means B^2 = 5184
And B = 72
Answer:
In the year 2010
Step-by-step explanation:
we have
where
A is the population in thousands
t is the number of years since 1998
so
For A=297 thousands
substitute and solve for t
simplify
Apply ln both sides
Remember that
1998+12=2010