You use the formula y=mx+b, therefore you have to isolate the y
First you subtract 3x to both sides.
3x - 5y = -35
-3x -3x
Then it would be
-5y = -3x -35
Then you divide -5 on both sides to isolate the y
-5y = -3x -35
/-5 /-5 /-5
Two negatives cancel out and make a positive so it would be
Y = 3/5x + 7
(:
Let's solve your equation step-by-step.<span><span><span>0.2<span>(<span>x+50</span>)</span></span>−6</span>=<span>0.4<span>(<span><span>3x</span>+20</span>)</span></span></span>Step 1: Simplify both sides of the equation.<span><span><span>0.2<span>(<span>x+50</span>)</span></span>−6</span>=<span>0.4<span>(<span><span>3x</span>+20</span>)</span></span></span><span><span><span><span><span><span>(0.2)</span><span>(x)</span></span>+<span><span>(0.2)</span><span>(50)</span></span></span>+</span>−6</span>=<span><span><span>(0.4)</span><span>(<span>3x</span>)</span></span>+<span><span>(0.4)</span><span>(20)</span></span></span></span>(Distribute)<span><span><span><span><span>0.2x</span>+10</span>+</span>−6</span>=<span><span>1.2x</span>+8</span></span><span><span><span>(<span>0.2x</span>)</span>+<span>(<span>10+<span>−6</span></span>)</span></span>=<span><span>1.2x</span>+8</span></span>(Combine Like Terms)<span><span><span>0.2x</span>+4</span>=<span><span>1.2x</span>+8</span></span><span><span><span>0.2x</span>+4</span>=<span><span>1.2x</span>+8</span></span>Step 2: Subtract 1.2x from both sides.<span><span><span><span>0.2x</span>+4</span>−<span>1.2x</span></span>=<span><span><span>1.2x</span>+8</span>−<span>1.2x</span></span></span><span><span><span>−<span>1x</span></span>+4</span>=8</span>Step 3: Subtract 4 from both sides.<span><span><span><span>−<span>1x</span></span>+4</span>−4</span>=<span>8−4</span></span><span><span>−<span>1x</span></span>=4</span>Step 4: Divide both sides by -1.<span><span><span>−<span>1x</span></span><span>−1</span></span>=<span>4<span>−1</span></span></span><span>x=<span>−4</span></span>Answer:<span>x=<span>−<span>4</span></span></span>
<span>s = -35 or s = 35 . . . . . . . . . . . . . . . </span>