I don't know the last point, but I'm going to assume it's N.
MN = 12 and KN = 8.
That would make this a rectangle.
All angles add up to 360.
Answer:
the probability that all tomatoes are sold is 0.919 (91.9%)
Step-by-step explanation:
since the random variable X= number of tomatoes that are demanded, is normally distributed we can make the standard random variable Z such that:
Z=(X-μ)/σ = (83 - 125)/30 = -1.4
where μ= expected value of X= mean of X (since X is normally distributed) , σ=standard deviation of X
then all tomatoes are sold if the demand surpasses 83 tomatos , therefore
P(X>83) = P(Z>-1.4) = 1- P(Z≤-1.4)
from tables of standard normal distribution →P(Z≤-1.4)=0.081 , therefore
P(X>83) = 1- P(Z≤-1.4) = 1 - 0.081 = 0.919 (91.9%)
thus the probability that all tomatoes are sold is 0.919 (91.9%)
Add 7 to both sides
3x + 12 = 7x
Subtract 3x
12 = 4x
Divide by 4
x = 3
Answer: A=113.1cm
Step-by-step explanation:
Applying the linear pair theorem, the measure of angle TSV in the image given is: 86°.
<h3>How to Apply the Linear Pair Theorem?</h3>
Given the following angles in the image above:
Measure angle RSU = (17x - 3)°,
Measure angle UST = (6x – 1)°
To find the measure of angle TSV, we need to find the value of x in the given expressions as shown below:
m∠RSU + m∠UST = 180 degrees (linear pair]
Substitute the values
17x - 3 + 6x - 1 = 180
Solve for x
23x - 4 = 180
23x = 180 + 4
23x = 184
x = 8
m∠TSV = 180 - 2(m∠UST) [Linear Pair Theorem]
m∠TSV = 180 - 2(6x - 1)
Plug in the value of x
m∠TSV = 180 - 2(6(8) - 1)
m∠TSV = 86°
Therefore, applying the linear pair theorem, the measure of angle TSV in the image given is: 86°.
Learn more about the linear pair theorem on:
brainly.com/question/5598970
#SPJ1