1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svp [43]
2 years ago
13

A rectangular parking lot is surrounded on its perimeter by a fence that is 1200 feet long. if the length of a rectangular parki

ng lot is 5 times it’s width which equation can be used to find the width of the parking lot
Mathematics
2 answers:
r-ruslan [8.4K]2 years ago
8 0

Answer:

fah)',55%9+*_)64•%π\¥)--_f

AfilCa [17]2 years ago
4 0

Answer:

2w+2(w+5)=1200

Step-by-step explanation:

You might be interested in
It takes Dan 32 minutes to complete 2 pages of math homework. At this rate, how many pages does he complete in 200 minutes?
Anna [14]
He can complete about 6 pages of math homework.
you first do 200 divided by 32 and you get 6.25. So therefore Dan can complete 6 pages in 200 minutes.
7 0
2 years ago
Read 2 more answers
Solve for x in the equation x2-8x+41=0
alex41 [277]
X = [-(-8) +/- sqrt((-8)^2 -4*41)] / 2  

x =  ( 8 + sqrt (-100) / 2  and  (8 - sqrt(-100) / 2

 4 +or- 5i
4 0
3 years ago
Pat needs to determine the height of a tree before cutting it down to be sure that it will not fall on a nearby fence. The angle
dem82 [27]

Answer:

229.23 feet.

Step-by-step explanation:

The pictorial representation of the problem is attached herewith.

Our goal is to determine the height, h of the tree in the right triangle given.

In Triangle BOH

Tan 60^0=\dfrac{h}{x}\\h=xTan 60^0

Similarly, In Triangle BOL

Tan 50^0=\dfrac{h}{x+60}\\h=(x+60)Tan 50^0

Equating the Value of h

xTan 60^0=(x+60)Tan 50^0\\xTan 60^0=xTan 50^0+60Tan 50^0\\xTan 60^0-xTan 50^0=60Tan 50^0\\x(Tan 60^0-Tan 50^0)=60Tan 50^0\\x=\dfrac{60Tan 50^0}{Tan 60^0-Tan 50^0} ft

Since we have found the value of x, we can now determine the height, h of the tree.

h=\left(\dfrac{60Tan 50^0}{Tan 60^0-Tan 50^0}\right)\cdotTan 60^0\\h=229.23 feet

The height of the tree is 229.23 feet.

5 0
3 years ago
Answer the question in the picture
nekit [7.7K]

Recall the angle sum identities:

\sin(x+y)=\sin x\cos y+\cos x\sin y

\cos(x+y)=\cos x\cos y-\sin x\sin y

Now,

\tan(x+y)=\dfrac{\sin(x+y)}{\cos(x+y)}=\dfrac{\sin x\cos y+\cos x\sin y}{\cos x\cos y-\sin x\sin y}

Divide through numerator and denominator by \cos x\cos y to get

\tan(x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}

Next, we use the fact that x,y lie in the first quadrant to determine that

\sin x=\dfrac12\implies\cos x=\sqrt{1-\sin^2x}=\dfrac{\sqrt3}2

\cos y=\dfrac{\sqrt2}2\implies\sin x=\sqrt{1-\cos^2x}=\dfrac1{\sqrt2}

So we then have

\tan x=\dfrac{\sin x}{\cos x}=\dfrac{\frac12}{\frac{\sqrt3}2}=\dfrac1{\sqrt3}

\tan y=\dfrac{\sin y}{\cos y}=\dfrac{\frac1{\sqrt2}}{\frac{\sqrt2}2}=1

Finally,

\tan(x+y)=\dfrac{\frac1{\sqrt3}+1}{1-\frac1{\sqrt3}}=\dfrac{1+\sqrt3}{\sqrt3-1}=2+\sqrt3\approx3.73

4 0
3 years ago
PLEASE PLEASE HELP AND PLEASE DON'T GUESS AND SHOW YOUR WORK THANK YOU!!!!!!!!!
FinnZ [79.3K]
Would it be distribution were you multiply the three in? -3(b-7) -3*b and -3*-7 where your answer would be -3b+21
4 0
3 years ago
Read 2 more answers
Other questions:
  • Please answer quickly! (30 pts)
    7·1 answer
  • What's 40% in decimals
    7·2 answers
  • Evaluate ln 7<br><br> A.) 0.51<br><br> B.) 1.95<br><br> C.) 0.85<br><br> D.) 1.61
    7·1 answer
  • Thanks in advance for your help ​
    10·1 answer
  • Which table contains only corresponding x - values and y - values where the value of y is 3 more than the quotient of x and 2?
    15·2 answers
  • CAN YOU PLEASE ANSWER MY LAST QUESTION ITS MY LAST QUESTION TO FULLY CLOSE OUT OF MATH!!!!!!! PLEASE PLEASE
    5·2 answers
  • What is the best approximation for the area of this circle?
    6·1 answer
  • I’ll love you forever if you help me with this ASAP PLEASE
    8·2 answers
  • Which number line models the sum of 1 + (-2) correctly?
    11·2 answers
  • Assume these are weekly. Matthew worked 8 hours at $9 a hour. Taxes were 16%. How much money was left?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!