Answer:

General Formulas and Concepts:
<u>Pre-Calculus</u>
2x2 Matrix Determinant:

3x3 Matrix Determinant:

<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]:

Limit Property [Multiplied Constant]:

Special Limit Rule [L’Hopital’s Rule]:

Derivatives
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:

Derivative Rule [Chain Rule]:
![\displaystyle [u(v)]' = u'(v)v'](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Bu%28v%29%5D%27%20%3D%20u%27%28v%29v%27)
Step-by-step explanation:
*Note:
I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.
<u />
<u>Step 1: Define</u>
<em>Identify given.</em>
<em />

<u>Step 2: Find Limit Pt. 1</u>
- [Function] Simplify [3x3 and 2x2 Matrix Determinant]:

- [Function] Substitute in <em>x</em>:

<u>Step 3: Find Limit Pt. 2</u>
- [Limit] Rewrite [Limit Property - Multiplied Constant]:

- [Limit] Apply Limit Rule [Variable Direct Substitution]:

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":
![\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%20%5CDelta%20%28%5Cfrac%7B%5Cpi%7D%7B3%7D%29%7D%7Bdh%7D%20%3D%20-3%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%20tan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%203%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%2B%203%20%5Cbigg%5D%20-%203%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%2B%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%206%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%206%20%5Cbigg%5D)

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:
![\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%5E2%20%5CDelta%20%28%5Cfrac%7B%5Cpi%7D%7B3%7D%29%7D%7Bdh%5E2%7D%20%3D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20-%202%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20-%20%5Csqrt%7B3%7D%20%5Cbigg%5B%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%201%20%5Cbigg%5D%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D)
![\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%2B%20%5Ctan%5E3%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20-%20%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%2B%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%202%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%202%20%5Cbigg%5D%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D)
![\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20-%202%5Csqrt%7B3%7D%20%5Ctan%20%5Cbigg%28%20h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Ctan%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D%20%2B%202%20%5Ctan%5E3%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%5Cbigg%5B%204%20%5Ctan%5E2%20%5Cbigg%28%202h%20%2B%20%5Cfrac%7B%5Cpi%7D%7B3%7D%20%5Cbigg%29%20%2B%204%20%5Cbigg%5D)

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

∴ we have <em>evaluated</em> the given limit.
---
Learn more about limits: brainly.com/question/27438198
---
Answer:
The graph in the upper left
Step-by-step explanation:
We can answer this question by elimination.
The answer can't be the two graphs on the right, because the two lines will never cross.
It can't be the graph at the lower left, because this shows both cyclists starting at Mile 0.
It must be the graph in the upper left. It shows one cyclist starting 45 mi ahead of the other, with the faster cyclist catching up after about 2.5 h.
So you have
8 digits (number available) to form
3 digit numbers (number selected).
Using the formula

where a is the number of available digits, P is the permutation function and c is the number of digits to be selected.
The number of three digit numbers that can be formed =

=
336 <span>
O R</span>By using the formula

where a is the number of available digits and c is the number of digits to be selected.<span>
</span>⇒

<span>
</span>⇒

<span>
</span>⇒ Permutation =
336<span>
</span>
Answer:
(7 , -3)
Step-by-step explanation:
The distance between A and B is 7 squares to the right and 3 squares down
Answer:
10:7, 10:5=2:1, 10:2=5,1
Step-by-step explanation: