Answer:
The minimum number of freezer bags needed to store all the blueberries is 7
Step-by-step explanation:
we know that
To find out the number of freezer bags needed , divide the total pounds of blueberries by 3 3/4, but first convert mixed number to an improper fraction



Round up
7 bags
therefore
The minimum number of freezer bags needed to store all the blueberries is 7
Let the one type of the bread be bread A
The second type of the bread be bread B
Let the flour be 'f' and the butter be 'b'
We need 150f + 50b for bread A and 75f + 75b for bread B
We can compare the amount of flour and bread needed for each bread and write them as ratio
FLOUR
Bread A : Bread B
150 : 75
2 : 1
We have a total of 2250gr of flour, and this amount is to be divided into the ratio of 2 parts : 1 part. There is a total of 3 parts.
2250 ÷ 3 = 750 gr for one part then multiply back into the ratio to get
Bread A : Bread B = (2×750) : (1×750) = 1500 : 750
BUTTER
Bread A : Bread B = 50 : 75 = 2 : 3
The amount of butter available, 1250 gr is to be divided into 2 parts : 3 parts.
There are 5 parts in total
1250 ÷ 5 = 250 gr for one part, then multiply this back into the ratio
Bread A: Bread B = (2×250) : (3×250) = 500 : 750
Hence, for bread A we need 1500 gr of flour and 500 gr of butter, and for bread B, we need 750 gr of flour and 750 gr of butter.
As the exterior angles always add up to 360, you can find the number of sides by dividing 360 by the measure of your exterior angle, 30. This gives you 360/30=12, meaning your polygon has 12 sides.
See attachment of the graph of the inequalities x + 7y ≤ 49 and 6x + y ≤ 48
<h3>How to graph the inequalities?</h3>
The inequalities are given as:
x + 7y ≤ 49
6x + y ≤ 48
The domain and the range are:
x ≥ 0
y ≥ 0
This means that, we plot the inequalities x + 7y ≤ 49 and 6x + y ≤ 48 under the domain and the range x ≥ 0 and y ≥ 0
See attachment of the graph of the inequalities x + 7y ≤ 49 and 6x + y ≤ 48
Read more about inequalities at:
brainly.com/question/25275758
#SPJ1
La franja amarilla del rectángulo tiene un área de 30 centímetros cuadrados.
<h3>¿Cuál es el área de la franja amarilla del rectángulo?</h3>
En este problema tenemos un rectángulo formado por dos cuadrados que se traslapan uno al otro. La franja amarilla es el área en la que los cuadrados se traslapan. La anchura del rectángulo es descrita por la siguiente ecuación:
(10 - x) + 2 · x = 17
Donde x se mide en centímetros.
A continuación, despejamos x en la ecuación descrita:
10 + x = 17
x = 7
Ahora, el área de la franja amarilla se determina mediante la fórmula de area de un rectángulo:
A = b · h
Donde:
- b - Base del rectángulo, en centímetros.
- h - Altura del rectángulo, en centímetros.
- A - Área del rectángulo, en centímetros cuadrados.
A = (10 - 7) · 10
A = 3 · 10
A = 30
El área de la franja amarilla del rectángulo es igual a 30 centímetros cuadrados.
Para aprender más sobre áreas de rectángulos: brainly.com/question/23058403
#SPJ1