Answer:
-3/4
Step-by-step explanation:
2 is an integer
-8/2 can be simplified to -4 which is an integer
-3/4 is a fraction that when divided produces a decimal. It is not an integer.
-5 is an integer
V = a ^ 3
V= 5 ^ 3 = 125 cm cube
First let’s try to cancel out the x
5x + -5x = 0
Add the y and the numbers together
-3y + -2y = -5y
26 + -16 = 10
-5y = 10
y = -2
Use y=-2 in one of the equations
-3(-2) + 5x = 26
6 + 5x = 26
5x = 20
X = 4
So
Y= -2
X= 4
https://mathsmadeeasy.co.uk/gcse-maths-revision/simultaneous-equations-gcse-maths-revision/
Check this link out for more help!
Answer:
(-3, 4)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Terms/Coefficients
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -x + 1
2x + 3y = 6
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 2x + 3(-x + 1) = 6
- Distribute 3: 2x - 3x + 3 = 6
- Combine like terms: -x + 3 = 6
- Isolate <em>x</em> terms: -x = 3
- Isolate <em>x</em>: x = -3
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define equation: y = -x + 1
- Substitute in <em>x</em>: y = -(-3) + 1
- Simplify: y = 3 + 1
- Add: y = 4
Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15