Answer:
3.4
Step-by-step explanation:
Standard deviation of a population is defined as:
σ² = ∑(xᵢ − μ)² / n
The standard deviation of a sample is defined as:
s² = ∑(xᵢ − x)² / (n - 1)
It's not clear which one we have, so let's calculate both.
First, we must find the mean.
μ = (5+12+15+10+12+6+8+8) / 8
μ = 9.5
Now we find the squares of the differences:
(5-9.5)² + (12-9.5)² + (15-9.5)² + (10-9.5)² + (12-9.5)² + (6-9.5)² + (8-9.5)² + (8-9.5)²
= 80
Divide by n:
σ² = 80 / 8
σ² = 10
And take the square root:
σ = √10
σ ≈ 3.2
That's not one of the answers, so let's try the standard deviation of a sample instead of a population.
Instead of dividing by n, we'll divide by n-1:
s² = 80 / 7
And take the square root:
s = √(80/7)
s ≈ 3.4
So that must be it.
Answer: 1/7
Step-by-step explanation:
7x=1
x=1/7
Step-by-step explanation:
<h3>Part A</h3>
<u>Angle measures:</u>
- a = x = z = 51° (as vertical angles and corresponding angles)
- b = d = y = w = 180° - 51° = 129° (as supplementary angles and corresponding angles)
<h3>Part B</h3>
Supplementary angles for a linear pair and sum to 180°.
<u>Examples are:</u>
- a and b or
- a and d or
- x and y etc.
Answer:
G represents sets of student appearing for GENERAL KNOWLEDGE
M represents sets of student appearing for MATHS
S represents sets of student appearing for SCIENCE
G ∩ M = { Max, Anael}
G ∪ S = { Max, Acel, Carl, Anael, Acton, Dario, Kai, Barek, Carlin}
Answer:
(1, 3)
Step-by-step explanation:
You are given the h coordinate of the vertex as 1, but in order to find the k coordinate, you have to complete the square on the parabola. The first few steps are as follows. Set the parabola equal to 0 so you can solve for the vertex. Separate the x terms from the constant by moving the constant to the other side of the equals sign. The coefficient HAS to be a +1 (ours is a -2 so we have to factor it out). Let's start there. The first 2 steps result in this polynomial:
. Now we factor out the -2:
. Now we complete the square. This process is to take half the linear term, square it, and add it to both sides. Our linear term is 2x. Half of 2 is 1, and 1 squared is 1. We add 1 into the set of parenthesis. But we actually added into the parenthesis is +1(-2). The -2 out front is a multiplier and we cannot ignore it. Adding in to both sides looks like this:
. Simplifying gives us this:

On the left we have created a perfect square binomial which reflects the h coordinate of the vertex. Stating this binomial and moving the -3 over by addition and setting the polynomial equal to y:

From this form,

you can determine the coordinates of the vertex to be (1, 3)