I found this!!!!
The scientist can use these two measurements to calculate the distance between the Sun and the shooting star by applying one of the trigonometric functions: Cosine of an angle.
- The scientist can substitute these measurements into cos\alpha=\frac{adjacent}{hypotenuse}cosα=
hypotenuse
adjacent
and solve for the distance between the Sun and the shooting star (which would be the hypotenuse of the righ triangle).
Step-by-step explanation:
You can observe in the figure attached that "AC" is the distance between the Sun and the shooting star.
Knowing the distance between the Earth and the Sun "y" and the angle x°, the scientist can use only these two measurements to calculate the distance between the Sun and the shooting star by applying one of the trigonometric functions: Cosine of an angle.
This is:
cos\alpha=\frac{adjacent}{hypotenuse}cosα=
hypotenuse
adjacent
In this case:
\begin{gathered}\alpha=x\°\\\\adjacent=BC=y\\\\hypotenuse=AC\end{gathered}
α=x\°
adjacent=BC=y
hypotenuse=AC
Therefore, the scientist can substitute these measurements into cos\alpha=\frac{adjacent}{hypotenuse}cosα=
hypotenuse
adjacent
, and solve for the distance between the Sun and the shooting star "AC":
cos(x\°)=\frac{y}{AC}cos(x\°)=
AC
y
AC=\frac{y}{cos(x\°)}AC=
cos(x\°)
y
Answer:25800 for 1 hour
Step-by-step explanation:
ewasfzafsagds
The answer is step 1 because it should have been 600 x 4= 100 x 6 x 4.
Answer:
the possible amounts that he will spend is $29-$15=$14
The answer would be the square root of 25 times 9 im pretty sure its been while and it would be 25*9=225 square root of 225 is 15