If 4/9 = 2/x then my guess is x=18
Answer:
A is the answer
Step-by-step explanation:
(0, -5):
-5 = 2(0) - 5 >>> -5 = -5
-5 = (0)^2 - 5 >>> -5 = -5
(2, -1):
-1 = 2(2) - 5 >>> -1 = 4 - 5 >>> -1 = -1
-1 = (2)^2 - 5 >>> -1 = 4 - 5 >>> -1 = -1
Answer:
9·x² - 36·x = 4·y² + 24·y + 36 in standard form is;
(x - 2)²/2² - (y + 3)²/3² = 1
Step-by-step explanation:
The standard form of a hyperbola is given as follows;
(x - h)²/a² - (y - k)²/b² = 1 or (y - k)²/b² - (x - h)²/a² = 1
The given equation is presented as follows;
9·x² - 36·x = 4·y² + 24·y + 36
By completing the square, we get;
(3·x - 6)·(3·x - 6) - 36 = (2·y + 6)·(2·y + 6)
(3·x - 6)² - 36 = (2·y + 6)²
(3·x - 6)² - (2·y + 6)² = 36
(3·x - 6)²/36 - (2·y + 6)²/36 = 36/36 = 1
(3·x - 6)²/6² - (2·y + 6)²/6² = 1
3²·(x - 2)²/6² - 2²·(y + 3)²/6² = 1
(x - 2)²/2² - (y + 3)²/3² = 1
The equation of the hyperbola is (x - 2)²/2² - (y + 3)²/3² = 1.
Answer:

Step-by-step explanation:
The <em>Richter scale</em>, the standard measure of earthquake intensity, is a <em>logarithmic scale</em>, specifically logarithmic <em>base 10</em>. This means that every time you go up 1 on the Richter scale, you get an earthquake that's 10 times as powerful (a 2.0 is 10x stronger than a 1.0, a 3.0 is 10x stronger than a 2.0, etc.).
How do we compare two earthquake's intensities then? As a measure of raw intensity, let's call a "standard earthquake" S. What's the magnitude of this earthquake? The magnitude is whatever <em>power of 10</em> S corresponds to; to write this relationship as an equation, we can say
, which we can rewrite in logarithmic form as
.
We're looking for the magnitude M of an earthquake 100 times larger than S, so reflect this, we can simply replace S with 100S, giving us the equation
.
To check to see if this equation is right, let's say we have an earthquake measuring a 3.0 on the Richter scale, so
. Since taking 100 times some intensity is the same as taking 10 times that intensity twice, we'd expect that more intense earthquake to be a 5.0. We can expand the equation
using the product rule for logarithms to get the equation

And using the fact that
and our assumption that
, we see that
as we wanted.