QUESTION 3
The sum of the interior angles of a kite is
.
.
.
.
.
But the two remaining opposite angles of the kite are congruent.

.
.
.
.
QUESTION 4
RH is the hypotenuse of the right triangle formed by the triangle with side lengths, RH,12, and 20.
Using the Pythagoras Theorem, we obtain;





QUESTION 5
The given figure is an isosceles trapezium.
The base angles of an isosceles trapezium are equal.
Therefore
QUESTION 6
The measure of angle Y and Z are supplementary angles.
The two angles form a pair of co-interior angles of the trapezium.
This implies that;



QUESTION 7
The sum of the interior angles of a kite is
.
.
.
.
.
But the two remaining opposite angles are congruent.

.
.
.
.
QUESTION 8
The diagonals of the kite meet at right angles.
The length of BC can also be found using Pythagoras Theorem;




QUESTION 9.
The sum of the interior angles of a trapezium is
.
.
.
But the measure of angle M and K are congruent.
.
.
.
.
Answer:
The result will always be the same
Step-by-step explanation:
Answer:
Segment BF = 16
Step-by-step explanation:
The given theorem states that a line parallel to one side of a triangle divides the other two sides proportionately
The given theorem is the Triangle Proportionality Theorem
According to the theorem, given that segment DE is parallel to segment BC, we have;

Therefore;

Which gives;

Similarly, given that EF is parallel to AB, we get;

Therefore;

Which gives;

Therefore, the statement that can be proved using the given theorem is segment BF = 16.
Answer:
(7,-2)
Step-by-step explanation:
G is currently at (2, 0)
(2+5, 0-2) becomes (7, -2)
Answer:
Choice D is correct
Step-by-step explanation:
The eccentricity of the conic section is 1, implying we are looking at a parabola. Parabolas are the only conic sections with an eccentricity of 1.
Next, the directrix of this parabola is located at x = 4. This implies that the parabola opens towards the left and thus the denominator of its polar equation contains a positive cosine function.
Finally, the value of k in the numerator is simply the product of the eccentricity and the absolute value of the directrix;
k = 1*4 = 4
This polar equation is given by alternative D