1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
3 years ago
10

What is the image of (-6, -2) after a dilation by a scale factor of 4 centered at the origin?​

Mathematics
1 answer:
Leviafan [203]3 years ago
6 0

Answer:  (-24, -8)

Explanation: Multiply the coordinates of the given point by the scale factor 4. This only works if the center of dilation is the origin.

You might be interested in
WILL MARK BRAINLIST!!! PLS HELP QUICK!!
Alborosie

Answer:

12.

Square root = 37,

Step-by-step explanation:

40^2 = 1600

35^2 = 30 * 40 + 25 = 1225

So the requred square is between 35 and 40

38^2 = 1444

37^2 = 1369 - so its this one.

Required difference = 1381 - 1369 = 12.

8 0
2 years ago
In the inequality -4x > -16, your sign will stay the same because there are 2 negatives. True or False
snow_tiger [21]

Answer:

False

Step-by-step explanation:

If x is a negative number then it will stay the same. If it is a positive number then it depends.

8 0
3 years ago
You need to design a rectangle with a perimeter of 14.2 cm. The length must be 2.4 cm. What is the width of the
irina1246 [14]

Part (a)

<h3>Answer: 2(2.4+w) = 14.2</h3>

--------------

Explanation:

L = 2.4 = length

W = unknown width

The perimeter of any rectangle is P = 2(L+W)

We replace L with 2.4, and replace P with 14.2 to get 14.2 = 2(2.4+w) which is equivalent to 2(2.4+w) = 14.2

========================================================

Part (b)

<h3>Answer:   w = 4.7</h3>

--------------

Explanation:

We'll solve the equation we set up in part (a)

2(2.4+w) = 14.2

2(2.4)+2(w) = 14.2

4.8+2w = 14.2

2w = 14.2-4.8

2w = 9.4

w = 9.4/2

w = 4.7

The width must be 4.7 cm.

4 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Question 7
Sedbober [7]

Answer:

1.27

Step-by-step explanation:

In Centimeter It's 127 Just Put A Decimal! :)

5 0
3 years ago
Other questions:
  • The surface area of the moon is 37,932,330km squared. Calculate the side length of a square with the same area.
    9·2 answers
  • Evaluate k(t) = 13t-2 <br><br> k(3)=
    8·2 answers
  • At the top of a roller coaster hill you are 210 feet above ground. At the bottom of the hill you are 15 feet above ground. Write
    9·1 answer
  • Sixty three thousandths in standard form
    15·1 answer
  • Two farmers bought a truck. The first farmer paid 4/5 of the price, and the second paid the rest. The first farmer's share was
    15·1 answer
  • 1,3,7,15,31<br> I need to know the next 3 numbers please
    14·1 answer
  • Which function is shown in the<br> graph below?
    8·1 answer
  • What is 6 1/5-4 1/4<br> please help
    6·2 answers
  • A spinner is divided into eight equal parts and numbered 1 through 8. Dora spins the spinner. Identify the probability of gettin
    9·1 answer
  • 57°
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!