(1) ∠ABC = 65°, ∠DBE = 65°, ∠CBE = 115°, ∠ABD = 115°
(2) ∠ABC = 62°, ∠DBE = 62°, ∠CBE = 118°, ∠ABD = 118°
Solution:
(1) In the given image ABC and DBE are vertical angles.
<u>Vertical angle theorem:</u>
If two angles are vertical then they are congruent.
⇒ ∠ABC = ∠DBE
⇒ 3x° + 38° = 5x° + 20°
Arrange like terms one side.
⇒ 38° – 20° = 5x° – 3x°
⇒ 18° = 2x°
⇒ x° = 9°
∠ABC = 3(9°) + 38° = 65°
∠DBE = 5(9°) + 20° = 65°
Adjacent angles in a straight line = 180°
⇒ ∠ABC + ∠CBE = 180°
⇒ 65° + ∠CBE = 180°
⇒ ∠CBE = 115°
∠ABD and ∠CBE are vertical angles.
∠ABD = 115°
(2) In the given image ABC and DBE are vertical angles.
⇒ ∠ABC = ∠DBE
⇒ 4x° + 2° = 5x° – 13°
Arrange like terms one side.
⇒ 13° + 2° = 5x° – 4x°
⇒ 15° = x°
∠ABC = (4(15°) + 2°) = 62°
∠DBE = 5(15°) – 13° = 62°
Adjacent angles in a straight line = 180°
⇒ ∠ABC + ∠CBE = 180°
⇒ 62° + ∠CBE = 180°
⇒ ∠CBE = 118°
∠ABD and ∠CBE are vertical angles.
∠ABD = 118°
Answer: -5, -7, and -9
Step-by-step explanation:
checking the pattern they are subtracting by two by the next term, so subtracting 2 from -3 would be -5 and so on.
It depends on which triangle you are trying to find out for.
Scalene triangles have 0 lines of symmetry.
Isosceles triangles have at least 1 line of symmetry.
Equilateral triangles have at least 3 lines of symmetry.
Answer:
The answer is 9(x-3).
Step-by-step explanation: