1. Using the exponent rule (a^b)·(a^c) = a^(b+c) ...

Simplify. Write in Scientific Notation
2. You know that 256 = 2.56·100 = 2.56·10². After that, we use the same rule for exponents as above.

3. The distributive property is useful for this.
(3x – 1)(5x + 4) = (3x)(5x + 4) – 1(5x + 4)
... = 15x² +12x – 5x –4
... = 15x² +7x -4
4. Look for factors of 8·(-3) = -24 that add to give 2, the x-coefficient.
-24 = -1×24 = -2×12 = -3×8 = -4×6
The last pair of factors adds to give 2. Now we can write
... (8x -4)(8x +6)/8 . . . . . where each of the instances of 8 is an instance of the coefficient of x² in the original expression. Factoring 4 from the first factor and 2 from the second factor gives
... (2x -1)(4x +3) . . . . . the factorization you require
Answer:
They will have 24 babies in one year
Step-by-step explanation:
All you need to do is add 6 babies every two months starting in January. Include January as the gerbils having their first 6 babies. Every 2 months includes 4 months out of the year. 6*4 = 24 babies.
Answer:
D. The graph of G(x) is the graph of F(x) flipped over the y-axis and
stretched vertically.
Step-by-step explanation:
since there is a negative, there must be a reflection. the reflection is over the y-axis because it is outside the x-value (-F(x) not F(-x))
the same goes for the vertical stretch. we know it is a vertical stretch because the 3 is outside the x-value (3F(x) not F(3x))
Answer:
Whats the question? I can surely answer it.
Let the one type of the bread be bread A
The second type of the bread be bread B
Let the flour be 'f' and the butter be 'b'
We need 150f + 50b for bread A and 75f + 75b for bread B
We can compare the amount of flour and bread needed for each bread and write them as ratio
FLOUR
Bread A : Bread B
150 : 75
2 : 1
We have a total of 2250gr of flour, and this amount is to be divided into the ratio of 2 parts : 1 part. There is a total of 3 parts.
2250 ÷ 3 = 750 gr for one part then multiply back into the ratio to get
Bread A : Bread B = (2×750) : (1×750) = 1500 : 750
BUTTER
Bread A : Bread B = 50 : 75 = 2 : 3
The amount of butter available, 1250 gr is to be divided into 2 parts : 3 parts.
There are 5 parts in total
1250 ÷ 5 = 250 gr for one part, then multiply this back into the ratio
Bread A: Bread B = (2×250) : (3×250) = 500 : 750
Hence, for bread A we need 1500 gr of flour and 500 gr of butter, and for bread B, we need 750 gr of flour and 750 gr of butter.