Answer:
a=245 s=315
Step: Solve a+s=560 for a:
a+s=560
a+s=560(Add -s to both sides)
a=−s+560
Step: Substitute −s+560 for a in 8a+3s=2905:
8a+3s=2905
8(−s+560)+3s=2905
−5s+4480=2905(Simplify both sides of the equation)
−5s+4480=2905(Add -4480 to both sides)
−5s=−1575
−5s=−1575(Divide both sides by -5)
s=315
Step: Substitute 315 for s in a=−s+560:
a=−s+560
a=−315+560
a=245
According to the secant-tangent theorem, we have the following expression:

Now, we solve for <em>x</em>.

Then, we use the quadratic formula:
![x_{1,2}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=x_%7B1%2C2%7D%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D)
Where a = 1, b = 6, and c = -315.
![\begin{gathered} x_{1,2}=\frac{-6\pm\sqrt[]{6^2-4\cdot1\cdot(-315)}}{2\cdot1} \\ x_{1,2}=\frac{-6\pm\sqrt[]{36+1260}}{2}=\frac{-6\pm\sqrt[]{1296}}{2} \\ x_{1,2}=\frac{-6\pm36}{2} \\ x_1=\frac{-6+36}{2}=\frac{30}{2}=15 \\ x_2=\frac{-6-36}{2}=\frac{-42}{2}=-21 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B6%5E2-4%5Ccdot1%5Ccdot%28-315%29%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B36%2B1260%7D%7D%7B2%7D%3D%5Cfrac%7B-6%5Cpm%5Csqrt%5B%5D%7B1296%7D%7D%7B2%7D%20%5C%5C%20x_%7B1%2C2%7D%3D%5Cfrac%7B-6%5Cpm36%7D%7B2%7D%20%5C%5C%20x_1%3D%5Cfrac%7B-6%2B36%7D%7B2%7D%3D%5Cfrac%7B30%7D%7B2%7D%3D15%20%5C%5C%20x_2%3D%5Cfrac%7B-6-36%7D%7B2%7D%3D%5Cfrac%7B-42%7D%7B2%7D%3D-21%20%5Cend%7Bgathered%7D)
<h2>Hence, the answer is 15 because lengths can't be negative.</h2>
Answer:
<h2>
Most explained:</h2>
40% = 100%
15 = (100% - 15% = 85%) 85% in Alaska
California = 15% of 40 = (0.15 x 40) = 6
Alaska = 85% of 40 = (0.85 x 40) = 34
<h2>The simple way (or the way i found it simple):</h2>
<h3>40 - 15 = 34</h3><h3>15% of 40 = 6</h3>
<h3>(I found the simple way after i solve the first way)</h3>
Bye, i hope this helps.
<h3 />
Answer:
A. Playfair's axiom.
Step-by-step explanation:
In a plane, given a line and a point not on it, at most, one line parallel to the given line can be drawn through the point.
- this implies Euclid's fifth postulate.
Answer:
Transitive
Step-by-step explanation: