Answer:
The product mass function is calculated taking different values of x=1,2,3,4.....
Answer:
<u>Perimeter</u>:
= 58 m (approximate)
= 58.2066 or 58.21 m (exact)
<u>Area:</u>
= 208 m² (approximate)
= 210.0006 or 210 m² (exact)
Step-by-step explanation:
Given the following dimensions of a rectangle:
length (L) =
meters
width (W) =
meters
The formula for solving the perimeter of a rectangle is:
P = 2(L + W) or 2L + 2W
The formula for solving the area of a rectangle is:
A = L × W
<h2>Approximate Forms:</h2>
In order to determine the approximate perimeter, we must determine the perfect square that is close to the given dimensions.
13² = 169
14² = 196
15² = 225
16² = 256
Among the perfect squares provided, 16² = 256 is close to 252 (inside the given radical for the length), and 13² = 169 (inside the given radical for the width). We can use these values to approximate the perimeter and the area of the rectangle.
P = 2(L + W)
P = 2(13 + 16)
P = 58 m (approximate)
A = L × W
A = 13 × 16
A = 208 m² (approximate)
<h2>Exact Forms:</h2>
L =
meters = 15.8745 meters
W =
meters = 13.2288 meters
P = 2(L + W)
P = 2(15.8745 + 13.2288)
P = 2(29.1033)
P = 58.2066 or 58.21 m
A = L × W
A = 15.8745 × 13.2288
A = 210.0006 or 210 m²
Answer:
Enlargement.
Scale Factor: 3
Step-by-step explanation:
Use points to find the enlargement. Typically, you will use all the points.
A(1 , 1) ⇒ A'(3 , 3)
B(2 , 1) ⇒ B'(6 , 3)
C(1 , 2) ⇒ C'(3 , 6)
D(2 , 2) ⇒ D'(6 , 6)
To find the scale factor, simply divide the Point' with the original Point. Use any number.
A'(3 , 3)/(A(1 , 1)) = 3
B'(6 , 3)/(B(2 , 1)) = 3
C'(3 , 6)/(C(1 , 2)) = 3
D'(6 , 6)/(D(2 , 2)) = 3
Your scale factor is 3.
Answer:
down in rate = 680-540 = 140
% change = 140*100/680 = 20.58%
Answer:
3/10
Step-by-step explanation:
Find the LCM of 5 and 2.
LCM = 10
