Standard from- 12.375 = (1×10) + (2×1) + (3/10) + (7/100) + (5/1000)
Number names/Word form- Twelve and three hundred seventy-five thousandths.
Answer:
8a. x = 16√3
8b. y = 8√3
Step-by-step explanation:
8a. Determination of the value of x
Adjacent = 24
Hypothenus = x
Angle θ = 30°
The value of x can be obtained by using cosine ratio as illustrated below:
Cos θ = Adjacent /Hypothenus
Cos 30 = 24 / x
√3/2 = 24/x
Cross multiply
x × √3 = 2× 24
x × √3 = 48
Divide both side by √3
x = 48/√3
Rationalise
x = 48/√3 × √3/√3
x = 48√3 / √3 × √3
x = 48√3 / 3
x = 16√3
8b. Determination of the value of y
Opposite = y
Adjacent = 24
Angle θ = 30°
The value of y can be obtained by using Tan ratio as illustrated below:
Tan θ = Opposite / Adjacent
Tan 30 = y / 24
1 / √3 = y /24
Cross multiply
y × √3 = 1 × 24
y × √3 = 24
Divide both side by √3
y = 24 /√3
Rationalise
y = 24 /√3 × √3/√3
y = 24 ×√3 / √3 × √3
y = 24√3 / 3
y = 8√3
Answer: 
Step-by-step explanation:
By the negative exponent rule, you have that:

By the exponents properties, you know that:

Therefore, you can rewrite the left side of the equation has following:

Descompose 32 and 8 into its prime factors:

Rewrite:

Then:

As the base are equal, then:

Solve for x:

In order to find the number of chips that would result in the minimum cost, we take the first derivative of the given equation. Note that the derivative refers to the slope of the graph at a given point. We can utilize this concept knowing that at the minimum or maximum point of a graph, the slope is zero.
Taking the derivative of the given equation and equating it to zero, we have:
y' = (0.000015)(2)x - (0.03)x° + 0
0 = (0.00003)x - 0.03
Solving for x or the number of chips produced, we have x = 1000. We then substitute this value in the given equation, such that,
y = (0.000015)(1000)² - (0.03)(1000) + 35
The minimized cost, y, to produce 1000 chips is then calculated to be $20.