Going by the data given, the best center of distribution to use in terms of mean and median is D) Mean for Bakery A because the data is symmetric; median for Bakery B because the data is not symmetric.
<h3>What centers of distribution should be used?</h3>
The mean should be used for data sets that are symmetric while the median should be used for data that is not symmetric.
The data is said to be symmetric when the mean and median are equal or very close.
Bakery A mean:
= (45 + 52 + 51 48 + 61 + 34 + 55 46) / 8
= 49
Bakery A median is 49.5
Bakery B mean:
= (48 42 + 25 45 + 57 + 10 + 43 + 46 ) / 8
= 39.5
Bakery B median is 44.
This shows that Bakery A data is symmetric so the best center of distribution to use is mean.
Bakery B is not symmetric so the center of distribution to use is median.
Find out more on symmetric data at brainly.com/question/7130507
#SPJ1
Pemdas, so exponent before multiply
so do a^-1/2 then multiply it by 2
remember that
![x^ \frac{m}{n}= \sqrt[n]{x^m}](https://tex.z-dn.net/?f=x%5E%20%5Cfrac%7Bm%7D%7Bn%7D%3D%20%5Csqrt%5Bn%5D%7Bx%5Em%7D%20%20)
and

therefor,

the we multiply by 2
196 I think hope this helps
Answer:
210 student's
Step-by-step explanation:
80 students chose the aquarium.
60 students chose the science center.
30 students chose the planetarium.
40 students chose the farm.
The students can't vote for more than one place, so you just add all the numbers together.
80 + 60 + 30 + 40 = 210 students