Kinetic energy = 0.5*M*V^2
Q7-
0.5*3*(2^2)= 6J
Q8a-
0.5*2*(2^2)= 4J
0.5*4*(3^2)=18J
the second ball has more kinetic energy.
Q8b-
at the max height, all the kinetic energy is converted to potential energy,
gravitational potential energy is = M*g*h
that theory would apply if you wanted to work out the maximum height achieved if the balls were thrown upward by rearranging. But, we are simply working out which ball will have more potential energy so:
First ball:
2kg*9.81(g)*10m = 196.2J
Second ball
4kg*9.81*10m= 392.4J
The second ball has more potential energy
Answer: Protons contribute towards making ATP by producing proton-motive force that provides energy for ATP synthesis.
Explanation: In the respiratory chain, the transfer of electrons from one complex to another is accompanied by pumping of protons out of the matrix. This creates a difference in proton concentration and separation of charge across the mitochondrial inner membrane. The electrochemical energy inherent in this difference in proton concentration called proton-motive force is used to drive ATP synthesis as protons flow back passively into the matrix through a proton pore.
The answer is the cell membrane. The cell membrane controls what nutrients come in, and what unneeded material comes out. It protects the cell from anything that might come in and harm it. It is kind of like the security guard. A security guard let's the good people in and keeps the bad people out.
The respiratory system cools the muscular system. The respiratory system acts as the support system for the muscular system. The respiratory system brings oxygen into the body for the muscular system to use.