Atomic Number of Lithium is 3, so it has 3 electrons in its neutral state. Also, Li₂ will have 6 electrons. But the chemical formula we are given has a negative charge on it (i.e Li₂⁻) so there is an additional electron (RED) present on this compound. So, the total number of electrons are 7. The
MOT diagram for this compound is shown below. According to diagram we are having 4 electrons in Bonding Molecular Orbitals (
BMO) and 3 electrons in Anti-Bonding Molecular Orbitals (
ABMO). Bond Order is calculated as,
Bond Order = (# of e⁻s in BMO - # of e⁻s in ABMO) ÷ 2
Bond Order = (4 - 3) ÷ 2
Bond Order = 1 ÷ 2
Or,
Bond Order = 1/2Or,
Bond Order = 0.5
<h2>
Hello!</h2>
The answer is:
The empirical formula is the option B. 
<h2>
Why?</h2>
The empirical formula of a compound is the simplest formula that can be written. On the opposite, the molecular formula involves a variant of the same compound, but it can be also simplified to an empirical formula.

We are looking for a formula that cannot be simplified by dividing the number of molecules/atoms that conforms the compound.
Let's discard option by option in order to find which formula is an empirical formula (cannot be simplified)
A. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

B. 
It's an empirical formula since it cannot be obtained by the multiplication of a whole number and the simplest formula. It's the simplest formula that we can find of the compound.
C. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

D. 
It's not an empirical formula, it's a molecular formula since it can be obtained by multiplying the empirical formula of the same compound.

Hence, the empirical formula is the option B. 
Have a nice day!
The 7160 cal energy is required to melt 10. 0 g of ice at 0. 0°C, warm it to 100. 0°C and completely vaporize the sample.
Calculation,
Given data,
Mass of the ice = 10 g
Temperature of ice = 0. 0°C
- The ice at 0. 0°C is to be converted into water at 0. 0°C
Heat required at this stage = mas of the ice ×latent heat of fusion of ice
Heat required at this stage = 10 g×80 = 800 cal
- The temperature of the water is to be increased from 0. 0°C to 100. 0°C
Heat required for this = mass of the ice×rise in temperature×specific heat of water
Heat required for this = 10 g×100× 1 = 1000 cal
- This water at 100. 0°C is to be converted into vapor.
Heat required for this = Mass of water× latent heat
Heat required for this = 10g ×536 =5360 cal
Total energy or heat required = sum of all heat = 800 +1000+ 5360 = 7160 cal
to learn more about energy
brainly.com/question/7185299
#SPJ4
Answer:
A. volume
Explanation:
Generally the equation for the ideal gas is mathematically given as
PV=nRT
Where
P=pressure
V=volume
R=gas constant
n=Number of Moles
T=Temperature
Therefore
V=nRT/P
Option A
For more information on this visit
brainly.com/question/17756498