The half-life equation is written as:
An = Aoe^-kt
We use this equation for the solution. We do as follows:
5.5 = 176e^-k(165)
k = 0.02
<span>What is the half-life of the goo in minutes?
</span>
0.5 = e^-0.02t
t = 34.66 minutes <----HALF-LIFE
Find a formula for G(t) , the amount of goo remaining at time t.G(t)=?
G(t) = 176e^-0.02t
How many grams of goo will remain after 50 minutes?
G(t) = 176e^-0.02(50) = 64.75 g
The change is that the piston gets hotter? (Theres more heat in it)
The best answer among the following choices would be A) since the other options are NOT nonrenewable energy sources.
In the first distillation this week, Hexane from the original solvent makes a larger contribution to the vapor pressure of the mixture.
In between hexane and toluene, the hexane will have more vapor pressure contribution in the solution. The boiling point of hexane is much lower than toluene. Therefore, it will evaporate easily at low temperatures and start exerting pressure on the solution.
Hence between hexane and toluene, because of more vapor pressure of hexane and lower boiling point, it will easily evaporate and exerts pressure.
Therefore, from the original solvent, hexane makes a larger contribution to the vapor pressure of the mixture.
To learn more about vapor pressure and hexane, visit: brainly.com/question/28206662
#SPJ4