1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
topjm [15]
3 years ago
11

Can someone plz help me plz

Mathematics
1 answer:
almond37 [142]3 years ago
3 0

Answer:

\large\boxed{C.\ y=2+x^4}

Step-by-step explanation:

The slope-intercept form of an equation of linear function:

y=mx+b

<em>m</em> - slope

<em>b</em> - y-intercept

============================

A.\\\\9y+3=0\qquad\text{subtract 3 from both sides}\\\\9y=-3\qquad\text{divide both sides by 9}\\\\y=-\dfrac{3}{9}\\\\y=-\dfrac{1}{3}\to m=0,\ b=-\dfrac{1}{3}

B.\\\\y-4x=1\qquad\text{add}\ 4x\ \text{to both sides}\\\\y=4x+1\to m=4,\ b=1

C.\\\\y=2+x^4\qquad\text{nonlinear, because}\ x\ \text{is in fourth power}

D.\\\\x-2y=7\qquad\text{subtract}\ x\ \text{from both sides}\\\\-2y=-x+7\qquad\text{divide both sides by (-2)}\\\\y=\dfrac{1}{2}x-\dfrac{7}{2}\to m=\dfrac{1}{2},\ b=-\dfrac{7}{2}

E.\\\\\dfrac{x}{y}+1=2\qquad\text{subtract 1 from both sides}\\\\\dfrac{x}{y}=1\to y=x\to m=1,\ b=0

You might be interested in
What is the domain restrictions for x=-6 and x=1
slavikrds [6]

Answer:

the domain in general is negative Infinity, infinity.

Step-by-step explanation:

Infinity means it is a straight line that goes on forever it never stops. graph the -6 and 1. I am not totally sure what domain restrictions are if you have an equation for it go a head and put it there and I can help you more.

8 0
3 years ago
Find the derivative.
krek1111 [17]

Answer:

\displaystyle f'(x) = \bigg( \frac{1}{2\sqrt{x}} - \sqrt{x} \bigg)e^\big{-x}

General Formulas and Concepts:

<u>Algebra I</u>

Terms/Coefficients

  • Expanding/Factoring

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f(x) = \frac{\sqrt{x}}{e^x}

<u>Step 2: Differentiate</u>

  1. Derivative Rule [Quotient Rule]:                                                                   \displaystyle f'(x) = \frac{(\sqrt{x})'e^x - \sqrt{x}(e^x)'}{(e^x)^2}
  2. Basic Power Rule:                                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}(e^x)'}{(e^x)^2}
  3. Exponential Differentiation:                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x}{(e^x)^2}
  4. Simplify:                                                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x}{e^{2x}}
  5. Rewrite:                                                                                                         \displaystyle f'(x) = \bigg( \frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x \bigg) e^{-2x}
  6. Factor:                                                                                                           \displaystyle f'(x) = \bigg( \frac{1}{2\sqrt{x}} - \sqrt{x} \bigg)e^\big{-x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

7 0
2 years ago
Consider the graph of the function f(x) = 25
trasher [3.6K]

Considering it's horizontal asymptote, the statement describes a key feature of function g(x) = 2f(x) is given by:

Horizontal asymptote at y = 0.

<h3>What are the horizontal asymptotes of a function?</h3>

They are the limits of the function as x goes to negative and positive infinity, as long as these values are not infinity.

Researching this problem on the internet, the functions are given as follows:

  • f(x) = 2^x.
  • g(x) = 2f(x) = 2(2)^x

The limits are given as follows:

\lim_{x \rightarrow -\infty} g(x) = \lim_{x \rightarrow -\infty} 2(2)^x = \frac{2}{2^{\infty}} = 0

\lim_{x \rightarrow \infty} g(x) = \lim_{x \rightarrow \infty} 2(2)^x = 2(2)^{\infty} = \infty

Hence, the correct statement is:

Horizontal asymptote at y = 0.

More can be learned about horizontal asymptotes at brainly.com/question/16948935

#SPJ1

3 0
1 year ago
Help please <br> Brainiest answer to whoever is first <br> Show work if you can
aalyn [17]

Answer:

114

Step-by-step explanation:

19x6=114

6 0
3 years ago
Read 2 more answers
Larry makes sandwiches for lunch everyday. he can make 5 sandwiches with every 3 tomatoes he buys. if he bought 9 tomatoes, how
tangare [24]
15 sandwiches
3 tomatoes= 5 sandwiches.
So if there's 9, that makes 3 groups of 3 tomatoes which would make 3x5 or 5+5+5 ;-;
15.





6 0
3 years ago
Other questions:
  • 19.9=9y-8 what is y equal to.
    14·2 answers
  • At the zoo Brooke learned that one of the Rhinos weight 4,897 pounds,one of the giraffe weight 2,667 one of the African elephant
    12·2 answers
  • Kayla needs $14,000 worth of new equipment for his shop. He can borrow this money at a discount rate of 10% for a year.
    8·1 answer
  • Find the slope of a line parallel to 3x – y = 1.
    15·1 answer
  • Figure PQRS is a rectangle.
    12·1 answer
  • Could someone please help me i really don't understand this
    10·2 answers
  • What is the simplified version of Square root of 3÷512
    8·1 answer
  • Solve the system of equations.<br> 1) X + y = 5<br> 2x - y = 7<br> 2) 3x+y=7 <br> -7-5y=25
    7·2 answers
  • What is the equation of this line? <br>y=2×-3<br>y=-1/2×-3<br>y=-2×-3<br>y=1/2×-3​
    5·1 answer
  • I need help I don’t know how to do this
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!