Answer:
For a function y = f(x), the range is the set of all the possible values of y.
In the question you wrote:
y = secx - 2
This can be interpreted as:
y = sec(x - 2)
or
y = sec(x) - 2
So let's see each case (these are kinda the same)
If the function is:
y = sec(x - 2)
Firs remember that:
sec(x) = 1/cos(x)
then we can rewrite:
y = 1/cos(x - 2)
notice that the function cos(x) has the range -1 ≤ y ≤ 1
Then for the two extremes we have:
y = 1/1 = 1
y = 1/-1 = -1
Notice that for:
y = 1/cos(x - 2)
y can never be in the range -1 < x < 1
As the denominator cant be larger, in absolute value, than 1.
Then we can conclude that the range is all reals except the interval:
-1 < y < 1
If instead the function was:
y = sec(x) - 2
y = 1/cos(x) - 2
Then with the same reasoning, the range will be the set of all real values except:
-1 - 2 < y < 1 - 2
-3 < y < -1
The slope is 3/5 just count the units up and to the side
Answer:
Step-by-step explanation:
![\frac{1}{2} x=a=\frac{2}{3} y\\\frac{1}{2}x=a\\x=2a \\\frac{2}{3} y=a\\y=\frac{3}{2} a\\x+y=2a+\frac{3}{2} a=\frac{4a+3a}{2} =\frac{7}{2} a=na\\n=\frac{7}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20x%3Da%3D%5Cfrac%7B2%7D%7B3%7D%20y%5C%5C%5Cfrac%7B1%7D%7B2%7Dx%3Da%5C%5Cx%3D2a%20%5C%5C%5Cfrac%7B2%7D%7B3%7D%20y%3Da%5C%5Cy%3D%5Cfrac%7B3%7D%7B2%7D%20a%5C%5Cx%2By%3D2a%2B%5Cfrac%7B3%7D%7B2%7D%20a%3D%5Cfrac%7B4a%2B3a%7D%7B2%7D%20%3D%5Cfrac%7B7%7D%7B2%7D%20a%3Dna%5C%5Cn%3D%5Cfrac%7B7%7D%7B2%7D)
Answer:
It might be 8
Step-by-step explanation:
40-32=8
Answer:
![\large\boxed{b=\pm\sqrt{77}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7Bb%3D%5Cpm%5Csqrt%7B77%7D%7D)
Step-by-step explanation:
![b^2=77\iff b=\pm\sqrt{77}\\\\\text{because}\\\\(-\sqrt{77})^2=77\ \text{and} \ (\sqrt{77})^2=77](https://tex.z-dn.net/?f=b%5E2%3D77%5Ciff%20b%3D%5Cpm%5Csqrt%7B77%7D%5C%5C%5C%5C%5Ctext%7Bbecause%7D%5C%5C%5C%5C%28-%5Csqrt%7B77%7D%29%5E2%3D77%5C%20%5Ctext%7Band%7D%20%5C%20%28%5Csqrt%7B77%7D%29%5E2%3D77)