1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
3 years ago
8

Which function in the inverse of f(x) = 2x+3

Mathematics
1 answer:
mixer [17]3 years ago
3 0

Answer: if im right it might be x=-3 although im not postive


Step-by-step explanation:

if you make the equation x=2x+3 you minus 2x on to both sides giving you      -x=3    so than you make x positive and 3 negative (if im correct)

You might be interested in
Help!! Its a photo but I need help on it quick!!! Ty if you help me!
telo118 [61]

Answer:

36

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
How to write a real world situation that could be modeled by the equation 100-6x=160-10x
blondinia [14]
<span>100-6x=160-10x
100 - 160 = -10x +6x
-4x = -60
x = -60 / -4
x = 15</span>
5 0
3 years ago
Which statements are true about the median of a data set?
Leto [7]

Answer: Third and fifth option

3) The median is the number in the middle on an ordered set of data.

5) To find the middle of an even data set, find the average of the two middle numbers.

Step-by-step explanation:

Given a set of data ordered from lowest to highest, the median of the data is the number that is in the middle. In other words, it is a number x for which it is true that 50% of the data is greater than x and the other 50% of the data is less than x.

For example, for the following set of 7 data:

2, 3, [5], 8, 13

the median is 5.

If the data number is even, for example 10 data:

3, 5, 9, 12, [19, 21], 33, 35, 40, 69

The median is<u><em> the average between the two data that are in the middle </em></u>

\frac{19 +21}{2} = \frac{40}{2} = 20

Note that the median only represents a partition of the ordered data set. Therefore, it is <em><u>not affected by outlier.</u></em> For example

2, 4, 4.5, 4.8, 5          Median = 4.5

2, 4, 4.5, 67, 1506     Median = 4.5

The median does <u><em>not represent the difference between the highest and the lowest data. </em></u>

Therefore the correct affirmations are:

3) The median is the number in the middle on an ordered set of data.

5) To find the middle of an even data set, find the average of the two middle numbers.

8 0
3 years ago
Read 2 more answers
What are the factors of six
Varvara68 [4.7K]
6 12 18 24 30 36 42 48 
7 0
3 years ago
Read 2 more answers
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Other questions:
  • Solve -5(2n+7)=3n+9-2n
    12·2 answers
  • -17x-8+x=24 please help me.
    15·1 answer
  • How is domain of the function f(x)=cosx restricted so that its inverse function exists?
    7·1 answer
  • Triangle N P O is shown. Line O N extends through point M to form exterior angle P N M. Angle N P O is 38 degrees. Angle P O N i
    7·1 answer
  • The measurement of the angle between West 1st Street and North Main Street is 30 ° less than the measurement of the angle betwee
    5·1 answer
  • <img src="https://tex.z-dn.net/?f=5.5%3D2%5Cpi%20%5Csqrt%7B%5Cfrac%7BL%7D%7B9.8%7D" id="TexFormula1" title="5.5=2\pi \sqrt{\frac
    9·2 answers
  • The Mount Rushmore Monument is 60 feet tall. A model of the monument is sold in the gift shop. If the model was made using a sca
    5·1 answer
  • What is the value of x?<br><br><br><br> Enter your answer in the box.<br><br> x =
    6·1 answer
  • Q = d / d+ n on a manufacturer's assembly line, d parts are found to be defective and n parts are nondefective. the formula abov
    7·1 answer
  • If you borrow $758 for two years at an interest rate of 6% how much Interest will you pay?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!