Since x is the cost of the oranges per pound in cents, the total amount spent on oranges in cents is 3x. Then, you spent 59 cents on cucumbers and 35 cents on bananas. The total amount spent on all food is the sum of the individuals. 3x+59+35. Combine like terms to get 3x+94. This will give you your total in cents. If you need a total in dollars, you would just multiply that expression by 0.01.
Answer:
Step-by-step explanation:
try the numbers -3 -2 1 and 3
Answer:
2 , 10 , and 15 in order of missing spaces, up to down
Step-by-step explanation:
You find the ration 8/20 and find out if the ration is simplifiable and turn it to 2/5 which you multiply the rest of the answers too. Hope this answers your question :)
The answer are both:
x=2+4i,2-4i
Answer:
What is the graph of h(x)=f(x)+g(x) with an example?
So many possible combinations of types of equations for f(x) and g(x).
If they are both linear. f(x) = 3x + 2. g(x) = 2x - 5. h(x) = f(x) + g(x) = 5x - 3. This is also linear.
f(x) has slope = 3 and y-intercept = 2. g(x) has slope = 2 and y intercept = -5. h(x) has slope = 5 and y-intercept = -3.
The graph of the sum of two linear equations is a straight line with slope equal to the sum of the slopes of the two linear equations and a y-intercept equal to the sum of the y-intercepts of the two linear equations.
If one is linear and the other is quadratic. f(x) = 2x + 3. g(x) = x^2 + 6x - 4. h(x) = f(x) + g(x) = x^2 + 8x - 1. This is quadratic.
f(x) has slope = 3 and y-intercept = 3. g(x) has an axis of symmetry of x = -3, vertex at (-3, -13), y-intercept = -4, x-intercepts = -3 + 13^½ and -3 - 13^½ . h(x) has an axis of symmetry of x = -4, vertex at (-4, -17), y-intercept = -1, x-intercepts = -4 + 17^½ and -4 - 17^½ .
The graph of the sum of a linear equation [y = mx + b] and a quadratic equation [y = Ax^2 + Bx + C] has an axis of symmetry of x = - (B + m) / 2A, vertex at ( - (B + m) / 2A, - (B + m)^2 / 4A + (b + C)), y-intercept = b + C, x-intercepts = (- (B + m) + ( (B + m)^2 - 4A (b + C))^½ ) / 2A and (- (B + m) - ( (B + m)^2 - 4A (b + C))^½ ) / 2A .