Answer:
The answer to this question can be described as follows:
-5 with multiplicity 3
9 with multiplicity 2
-1 with multiplicity 1
Step-by-step explanation:
Given:

Solve the above equation:

The roots of the polynomial are as follows:

That's why the roots are:
5 with multiplicity 3
9 with multiplicity 2
-1 with multiplicity 1
Let's solve your inequality step-by-step.
<span><span><span>
a − 8 </span>+ 15 </span>> <span>23
</span></span>Step 1: Simplify both sides of the inequality.
<span><span><span><span><span>
−1/</span>8</span>a </span>+ 15 </span>> 23
</span>
Step 2: Subtract 15 from both sides.
<span><span><span><span><span><span>
−1/</span>8</span>a </span>+ 15 </span>− 15 </span>> <span>23 − 15
</span></span><span><span><span><span>
−1/</span>8</span>a </span>> 8
</span>
Step 3: Multiply both sides by 8/(-1).
<span><span><span>
(<span>8/<span>−1</span></span>) </span>* <span>(<span><span><span>−1/</span>8</span>a</span>) </span></span>> <span><span>(<span>8/<span>−1</span></span>) </span>* <span>(8)
</span></span></span><span>
a < <span>−<span>64
Therefore, the answer is a < -64! I hope this helped! :)</span></span></span>
Answer:
The answer is b
Step-by-step explanation:
The location of the y value of R' after using the translation rule is -10
<h3>What will be the location of the y value of R' after using the translation rule? </h3>
The translation rule is given as:
(x + 4, y - 7)
The pre-image of R is located at (-17, -3)
Rewrite as
R = (-17, -3)
When the translation rule is applied, we have:
R' = (-17 + 4, -3 - 7)
Evaluate
R' = (-13, -10)
Remove the x coordinate
R'y = -10
Hence, the location of the y value of R' after using the translation rule is -10
Read more about translation at:
brainly.com/question/26238840
#SPJ1