Take derivitive
note
the derivitive of sec(x)=sec(x)tan(x)
so
remember the quotient rule
the derivitive of

so
the derivitive of
so now evaluate when t=pi
we get
sec(pi)=-1
tan(pi)=0
we get

slope=1/pi
use slope point form
for
slope=m and point is (x1,y1)
equation is
y-y1=m(x-x1)
slope is 1/pi
point is (pi,1/pi)
y-1/π=1/π(x-π)
times both sides by π
πy-1=x-π
πy=x-π+1
y=(1/π)x-1+(1/π)
or, alternately
-(1/π)x+y=(1/π)-1
x-πy=π-1
Answer and Step-by-step explanation:
Let x and y be two positive integers and their sum is 14:
X + y = 14
And the sum of square of this number is:
f = x2 + y2
= x2+ (14 – x)2
Differentiate with respect to x, we get:
F’(x) = [ x2 + (14 – x)2]’ = 0
2x + 2(14-x)(-1) = 0
2x +( 28 – 2x)(-1) = 0
2x – 28 +2x = 0
2x + 2x = 28
4x = 28
X = 7
Hence, y = 14 – x = 14 -7 = 7
Now taking second derivative test:
F”(x) > 0
For x = y = 7,f reaches its maximum value:
(7)2 + (7)2 = 49 + 49
= 98
F at endpoints x Є [ 0, 14]
F(0) = 02 + (14 – 0)2
= 196
F(14) = (14)2 + (14 – 14)2
= 196
Hence the sum of squares of these numbers is minimum when x = y = 7
And maximum when numbers are 0 and 14.
Answer: b. 50
Step-by-step explanation:
Hence the employee made an error for 50 serving size.
I really need one too. Thanks for the question.