<span>Divide the number of grams present in the sample by copper's gram atomic weight to find the number of gram atomic weights present. Then multiply that result by Avogadro's Number: 6.022137 x 10^23 atoms/gram atomic weight.1,200 g/(63.54 g/gram atomic weight) ? 18.885741 gram-atomic weights. Hope this helps. </span>
He realized that the physical and chemical properties of elements<span> were related to their atomic mass in a '</span>periodic<span>' way, and </span>arranged<span> them so that groups of </span>elements<span> with similar properties fell into vertical columns in </span>his table<span>.
</span><span>
</span>
Answer:
The bands are due to:
λmax = 289 nm n→π* transition (E = 12)
λmax = 182 nm π→π* transition (E=10000)
Explanation:
The two types of acetaldehyde transition are as follows:
n→π* and π→π*
From the attached diagram we have to:
ΔEn→π* < ΔEπ→π*
ΔEα(1/λ)
Thus:
λn→π* > λπ→π*
In n→π* spin forbidden, the intensity is low. Thus, the molar extinction E for n→π* is very low.
The same way, for π→π* spin allowed the intensity is high. Thus, the molar extinction coefficient E for π→π* is high too.
The bands are due to:
λmax = 289 nm n→π* transition (E = 12)
λmax = 182 nm π→π* transition (E=10000)
An atop is everything that flows around you