1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks [24]
3 years ago
11

What is pollinations​

Chemistry
1 answer:
GaryK [48]3 years ago
6 0

Answer:

Explanation:

A pollinator is an animal that moves pollen from the male anther of a flower to the female stigma of a flower. This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains.

You might be interested in
What is the formula of the compound that occurs when Strontium and Chlorine combine<br> ionically?
Olenka [21]

Answer:

SrCl2

Explanation:

5 0
3 years ago
Which of the following is the correct chemical formula for cs and br? csbr cs2br csbr2
nalin [4]
The correct chemical formulae is CsBr
4 0
3 years ago
Read 2 more answers
A 100.0 mL solution containing 0.864 g of maleic acid (MW=116.072 g/mol) is titrated with 0.276 M KOH. Calculate the pH of the s
Lilit [14]

Answer:

pH = 1.32

Explanation:

                 H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺

This problem involves a weak diprotic acid which we can solve by realizing they amount  to buffer solutions.  In the first  deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:

So first calculate the moles reacted and produced:

n H₂M = 0.864 g/mol x 1 mol/ 116.072 g  =  0.074 mol H₂M

54 mL x  1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH

it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.

moles H₂M left = 0.074 - 0.015 = 0.059

moles HM⁻ produced = 0.015

Using the Henderson - Hasselbach equation to solve for pH:

ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325

Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.

For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.

           

3 0
3 years ago
Which electron dot diagram represents H2?
Marizza181 [45]

Answer:

H:H

Explanation:

7 0
3 years ago
Based upon the following diagram, propose a possible identity for atoms X and Y. Explain your answer in terms of the periodic ta
zhenek [66]

Answer:

Up until now we have been discussing only the elemental forms of atoms which are neutrally charged. This is because the number of electrons (negative in charge) is equal to the number of protons (positive in charge). The overall charge on the atom is zero, because the magnitude of the negative charge is the same as the magnitude of the positive charge. This one-to-one ratio of charges is not, however, the most common state for many elements. Deviations from this ratio result in charged particles called ions.

Throughout nature, things that are high in energy tend to move toward lower energy states. Lower energy configurations are more stable, so things are naturally drawn toward them. For atoms, these lower energy states are represented by the noble gas elements. These elements have electron configurations characterized by full s and p subshells. This makes them stable and unreactive. They are already at a low energy state, so they tend to stay as they are.

The elements in the other groups have subshells that are not full, so they are unstable when compared to the noble gases. This instability drives them toward the lower energy states represented by the noble gases that are nearby in the periodic table. In these lower energy states, the outermost energy level has eight electrons (an “octet”). The tendency of an atom toward a configuration in which it possesses eight valence electrons is referred to as the “Octet Rule.”

There are two ways for an atom that does not have an octet of valence electrons to obtain an octet in its outer shell. One way is the transfer of electrons between two atoms until both atoms have octets. Because some atoms will lose electrons and some atoms will gain electrons, there is no overall change in the number of electrons, but with the transfer of electrons the individual atoms acquire a nonzero electric charge. Those that lose electrons become positively charged, and those that gain electrons become negatively charged. Recall that atoms carrying positive or negative charges are called ions. If an atom has gained one or more electrons, it is negatively charged and is called an anion. If an atom has lost one or more electrons, it is positively charged and is called a cation. Because opposite charges attract (while like charges repel), these oppositely charged ions attract each other, forming ionic bonds. The resulting compounds are called ionic compounds.

The second way for an atom to obtain an octet of electrons is by sharing electrons with another atom. These shared electrons simultaneously occupy the outermost shell of both atoms. The bond made by electron sharing is called a covalent bond. Covalent bonding and covalent compounds will be discussed in Chapter 4 “Covalent Bonding and Simple Molecular Compounds”.

At the end of chapter 2, we learned how to draw the electron dot symbols to represent the valence electrons for each of the elemental families.  This skill will be instrumental in learning about ions and ionic bonding. Looking at Figure 3.1, observe the Noble Gas family of elements. The electron dot symbol for the Nobel Gas family clearly indicates that the valence electron shell is completely full with an octet of electrons.  If you look at the other families, you can see how many electrons they will need to gain or lose to reach the octet state.  Above, we noted that elements are the most stable when they can reach the octet state. However, it should also be noted that housing excessively high negative or positive charge is unfavorable.  Thus, elements will reach the octet state and also maintain the lowest charge possible.   You will note that for the IA, IIA, IIIA and transition metals groups, it is more economical to lose electrons (1-3 electrons) from their valence shells to reach the octet state, rather than to gain 5-7 electrons.  Similarly main group columns VA, VIA, and VIIA tend to gain electrons (1-3) to complete their octet, rather than losing 5-7 electrons. Some atoms, like carbon, are directly in the middle.  These atoms don’t like to gain or lose electrons, but tend to favor the sharing model of chemical bonding. The remaining sections of this chapter will focus on the formation of ions and the resulting ionic compounds.

Explanation:

8 0
3 years ago
Other questions:
  • A solid that forms when two liquids react with one another
    7·2 answers
  • The ___ fluid compartment consists of fluid contained within all cells in the body and contains 2/3 of the body water in healthy
    5·1 answer
  • This reaction forms triphenylmethanol from benzophenone. How could you use infrared spectroscopy to show that the benzophenone h
    5·1 answer
  • Which of the following is not a base <br> a)orange <br> b)shampoo <br> c)toothpaste <br> c)bleach
    7·2 answers
  • Which of the following is the smallest volume? 500 mL 2,500 cm3 5.5 x 10-1 L 25 m3
    11·1 answer
  • A covalent bond forms
    9·1 answer
  • You carry out a titration of a pure weak triprotic acid and only see two major pH jumps. One at 10.0 mL and the second one at 15
    6·1 answer
  • What is the difference between a strong base and a weak base?
    13·1 answer
  • Please help me please.
    11·1 answer
  • Is it possible to replace our dependency on fossil fuels with alternative renewable energy's?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!