Missing in your question:
Picture (1)
when its an open- tube manometer and the h = 52 cm.
when the pressure of the atmosphere is equal the pressure of the gas plus the pressure from the mercury column 52 Cm so, we can get the pressure of the gas from this formula:
P(atm) = P(gas) + height (Hg)
∴P(gas) = P(atm) - height (Hg)
= 0.975 - (520/760)
= 0.29 atm
Note: I have divided 520 mm Hg by 760 to convert it to atm
Picture (2)
The pressure of the gas is the pressure experts by the column of mercury and when we have the Height (Hg)= 67mm
So the pressure of the gas =P(atm) + Height (Hg)
= 0.975 + (67/ 760) = 1.06 atm
Picture (3)
As the tube is closed SO here the pressure of the gas is equal the height of the mercury column, and when we have the height (Hg) = 103 mm. so, we can get the P(gas) from this formula:
P(gas) = Height(Hg)
= (103/760) = 0.136 atm
The final temperature of the lead-water system will be lower than the final temperature of the copper-water system.
Cheese bc cheese is good and it’s a tool
Answer:
1.09 × 10⁻⁷ m
UV region
Explanation:
Step 1: Given and required data
Energy of the photon of light (E): 1.83 × 10⁻¹⁸ J
Planck's constant (h): 6.63 × 10⁻³⁴ J.s
Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Calculate the wavelength (λ) of this photon of light
We will use the Planck-Einstein's relation.
E = h × c/λ
λ = h × c/E
λ = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/1.83 × 10⁻¹⁸ J = 1.09 × 10⁻⁷ m
This wavelenght falls in the UV region of the electromagnetic spectrum.
Answer: Fluorine contains seven valence electrons. It needs one more electron to complete its octet. The oxidation number is 1- and indicates fluorine will gain or share one electron when it combines with another atom to become a more stable compound.
Explanation: Fluorine contains seven valence electrons. It needs one more electron to complete its octet. The oxidation number is 1- and indicates fluorine will gain or share one electron when it combines with another atom to become a more stable compound.