Answer:
Explanation:
<u>1. Using the minimun number of sheets of paper in the interval [300, 400]</u>
a) Cost: $ 2.00 / 100 sheets
b) 300 sheets / day × $ 2.00 / 100 sheets = $ 6.00 / day
c) Approimately 20 school days per month:
- $ 6.00 / day × 20 day = $ 120.00
<u>2. Using the maximum number of sheets of paper in the interval [300, 400]</u>
a) Cost: $ 2.00 / 100 sheets
b) 400 sheets / day × $ 2.00 / 100 sheets = $ 8.00 / day
c) Approimately 20 school days per month:
- $8.00 / day × 20 day = $ 160.00
<u>3. Middle value:</u>
Calculate the middle value between $160.00 and $120.00
- [$120.00 + $160.00] / 2 = $140.00
Thus, the answer is the option A.
Answer:
v = 1/(1+i)
PV(T) = x(v + v^2 + ... + v^n) = x(1 - v^n)/i = 493
PV(G) = 3x[v + v^2 + ... + v^(2n)] = 3x[1 - v^(2n)]/i = 2748
PV(G)/PV(T) = 2748/493
{3x[1 - v^(2n)]/i}/{x(1 - v^n)/i} = 2748/493
3[1-v^(2n)]/(1-v^n) = 2748/493
Since v^(2n) = (v^n)^2 then 1 - v^(2n) = (1 - v^n)(1 + v^n)
3(1 + v^n) = 2748/493
1 + v^n = 2748/1479
v^n = 1269/1479 ~ 0.858
Step-by-step explanation:
Https://www.westerville.k12.oh.us/userfiles/4218/Classes/7005/4.1.6%20hw%20ans.pdf?id=540983
1. 4
2. 42
3. 30
4. 4
5. 18
6. 8
7. 36
8. 9
9. 19
10. equivalent
11. not equivalent
12. not equivalent
13. not equivalent
14. equivalent
15. equivalent
Have a good day, my dude.