1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rusak2 [61]
3 years ago
11

Tyson brought a bag of coins into the bank to be counted. The bag contained only nickels and

Mathematics
1 answer:
podryga [215]3 years ago
6 0

There will be 130 nickels and 90 dimes. 100 nickels is 5 dollars. 90 dimes are 9 dollars. And then there will be 30 left. 30 dimes isn’t 1.50$ bur 30 nickels is 1.50$ so you add the 30 to the nickels and it’ll be exactly 15.50$.

You might be interested in
Let T be the plane-2x-2y+z =-13. Find the shortest distance d from the point Po=(-5,-5,-3) to T, and the point Q in T that is cl
GaryK [48]

Answer:

d=10u

Q(5/3,5/3,-19/3)

Step-by-step explanation:

The shortest distance between the plane and Po is also the distance between Po and Q. To find that distance and the point Q you need the perpendicular line x to the plane that intersects Po, this line will have the direction of the normal of the plane n=(-2,-2,1), then r will have the next parametric equations:

x=-5-2\lambda\\y=-5-2\lambda\\z=-3+\lambda

To find Q, the intersection between r and the plane T, substitute the parametric equations of r in T

-2x-2y+z =-13\\-2(-5-2\lambda)-2(-5-2\lambda)+(-3+\lambda) =-13\\10+4\lambda+10+4\lambda-3+\lambda=-13\\9\lambda+17=-13\\9\lambda=-13-17\\\lambda=-30/9=-10/3

Substitute the value of \lambda in the parametric equations:

x=-5-2(-10/3)=-5+20/3=5/3\\y=-5-2(-10/3)=5/3\\z=-3+(-10/3)=-19/3\\

Those values are the coordinates of Q

Q(5/3,5/3,-19/3)

The distance from Po to the plane

d=\left| {\to} \atop {PoQ}} \right|=\sqrt{(\frac{5}{3}-(-5))^2+(\frac{5}{3}-(-5))^2+(\frac{-19}{3}-(-3))^2} \\d=\sqrt{(\frac{5}{3}+5))^2+(\frac{5}{3}+5)^2+(\frac{-19}{3}+3)^2} \\d=\sqrt{(\frac{20}{3})^2+(\frac{20}{3})^2+(\frac{-10}{3})^2}\\d=\sqrt{\frac{400}{9}+\frac{400}{9}+\frac{100}{9}}\\d=\sqrt{\frac{900}{9}}=\sqrt{100}\\d=10u

7 0
3 years ago
What is the answer to 81.56 + n - 2.55
Anna71 [15]
81.56+n-2.55=0
81.56+n=2.55
n=2.55-81.56
n=-79.01
5 0
2 years ago
Read 2 more answers
Help PLSS HELP ASAP<br> TAN^2 X + SQRT3 TAN X =[0}
Delicious77 [7]

\boxed{\large{\bold{\textbf{\textsf{{\color{blue}{Answer}}}}}}:)}

see this attachment ☝☝☝

8 0
2 years ago
Use two different methods to find an explain the formula for the area of a trapezoid that has parallel sides of length a and B a
evablogger [386]

Answer:

Formula of Trapezoid:

A = (a + b) × h / 2

The formula can be derived in different ways. for now, we have discussed two ways:

1. By using the formula of a triangle

2. By dividing into different sections

Step-by-step explanation:

1. By using the formula of a triangle

One of the ways to explain a formula for an area of a trapezoid using a formula for a triangle can be as follows.

Assume a trapezoid PQRS with lower base SR and upper base PQ (they are parallel) and sides PS and QR.

The image is attached below.

Connect vertices P and R with a diagonal.

Consider triangle ΔPQR as having a base PQ and an altitude from vertex R down to point M on base PQ (RM⊥PQ).

Its area is

S1=\frac{1}{2} *PQ*RM

Consider triangle ΔPRS as having a base SR and an altitude from vertex P up to point N on-base SR (PN⊥SR).

Its area is

S2=\frac{1}{2} *SR*PN

Altitudes RM and PN are equal and constitute the distance between two parallel bases PQ and SR.

They both are equal to the altitude of the trapezoid h.

Therefore, we can represent areas of our two triangles as

S1=\frac{1}{2}*PQ*h

S2=\frac{1}{2}*SR*h

Adding them together, we get the area of the whole trapezoid:

S=S1+S2=\frac{1}{2} (PQ+SR)h,

which is usually represented in words as "half-sum of the bases times the altitude".

2. By dividing into different sections

Trapezoid PQRS is shown below, with PQ parallel to RS.

Figure 1 - Trapezoid PQRS with PQ parallel to RS(image is attached below.)

We are going to derive the area of a trapezoid by dividing it into different sections.

If we drop another line from Q, then we will have two altitudes namely PT and QU.

Figure 2 - Trapezoid PQRS divided into two triangles and a rectangle. (image is attached below.)

From Figure 2, it is clear that Area of PQRS = Area of PST + Area of PQUT + Area of QRU. We have learned that the area of a triangle is the product of its base and altitude divided by 2, and the area of a rectangle is the product of its length and width. Hence, we can easily compute the area of PQRS. It is clear that

=> A_{PQRS} = (\frac{ah}{2}) + b_{1}h + \frac{ch}{2}

Simplifying, we have

=>A= \frac{ah+2b_{1+C} }{2}

Factoring we have,

=> A_{PQRS} = (a+ 2b_{1} + c)\frac{h}{2}  \\= > {(a+ b_{1} + c) + b_{1} }\frac{h}{2}

 But, a+ b_{1} + c  is equal to b_{2}, the longer base of our trapezoid.

Hence, A_{PQRS}= (b_{1} + b_{2} )\frac{h}{2}

We have discussed two ways by which we can derive area of a trapezoid.

Read to know more about Trapezoid

brainly.com/question/4758162?referrer=searchResults

#SPJ10

5 0
1 year ago
HELP ME! @all smart people
larisa86 [58]
The first one is 5.3 you multiply 4x4 which is 16 then divide by 3 which then gives you the answer
6 0
2 years ago
Read 2 more answers
Other questions:
  • After selling some lemonade and cookies, Vivian and her brother Gil had 7-one dollar bills, 8 quarters and 6 dimes.They agreed t
    11·1 answer
  • A prisoner on trial for a felony is presumed innocent until proven guilty. (That is, innocent is the null hypothesis.) Which of
    7·1 answer
  • Can someone please help
    14·1 answer
  • the length of a rectangle is three times it’s width. if the area of the rectangle is 300 yd^2, find its perimeter.
    8·1 answer
  • PLEASEEE I NEED HELP
    12·1 answer
  • One of the angles of a pair of complementary angles is 50°. Find the ratio of the pair of complementary angles​
    6·1 answer
  • today reza ate 20 grapes which is 400% as many grapes as he ate yesterday. explain how to use equal ratios to find the number of
    9·2 answers
  • Need help with geometry.
    13·1 answer
  • 3x + 7m + 4x - 5m + 25
    11·1 answer
  • Which solution shown below contains an error?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!