1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vivado [14]
3 years ago
14

El peso en gramos de las cajas de cereales de cierta marca siguen una distribución Normal con media de 500g y desviación de 5g [

N(500,%)] Calcula la probabilidad de encontrar una caja que pese menos de 496 gramos. ¿Qué porcentaje de cajas pesa entre 505g y 510g?
Mathematics
1 answer:
Marianna [84]3 years ago
3 0

Answer:

a) 2.1186

b) 13.591%

Step-by-step explanation:

Resolvemos usando la fórmula de puntuación z

z = (x-μ) / σ, donde

x es la puntuación bruta =

μ es la media de la población = 500g

σ es la desviación estándar de la población = 5 g

a) Calcula la probabilidad de encontrar una caja que pese menos de 496 gramos.

Para x = 496g

z = 496 - 500/5

z = -0.8

Valor de probabilidad de Z-Table:

P (x <496) = 0.21186

La probabilidad de encontrar una caja que pese menos de 496 gramos es 0.21186

b) ¿Qué porcentaje de cajas pesan entre 505 gy 510 g?

Para x = 505 g

z = 505 - 500/5

z = 1

Valor de probabilidad de Z-Table:

P (x = 505) = 0.84134

Para x = 510g

z = 510 - 500/5

z = 2

Valor de probabilidad de Z-Table:

P (x = 510) = 0.97725

La probabilidad de cajas que pesen entre 505 gy 510 g

P (x = 510) - P (x = 505)

= 0.97725 - 0.84134

= 0.13591

Conversión a porcentaje

= 0.13591 × 100

= 13.591%

El porcentaje de cajas que pesan entre 505g y 510g es del 13.591%

You might be interested in
Multiply the polynomial (12x^4 - 4x^3 + 5) by (-4x^2) *
murzikaleks [220]

Answer:

<em>- 48 {x}^{6}  + 16 {x}^{5}  - 20 {x}^{2}</em>

<em>Option</em><em> </em><em>D</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>correct</em><em> </em><em>option</em><em>.</em>

<em>Sol</em><em>ution</em><em>,</em>

<em>- 4 {x}^{2} (12 {x}^{4}  - 4 {x}^{3}  + 5) \\  =  - 4 {x}^{2}  \times 12 {x}^{4}  + 4 {x}^{2}  \times 4 {x}^{3}  - 4 {x}^{2}  \times 5 \\  =  - 48 {x}^{6}  + 16 {x}^{5}  - 20 {x}^{2}</em>

<em>hope</em><em> </em><em>this </em><em>helps</em><em>.</em><em>.</em><em>.</em>

<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>

7 0
3 years ago
What is the length of the diagonal, d, of the rectangular prism shown below?
Svetlanka [38]

Answer: I think it’s 5 I’m not sure

Step-by-step explanation:

6 0
2 years ago
If we sample from a small finite population without​ replacement, the binomial distribution should not be used because the event
seropon [69]

Answer:

5/4324 = 0.001156337

Step-by-step explanation:

To better understand the hyper-geometric distribution consider the following example:

There are 100 senators in the US Congress, and suppose 60 of them are republicans  so 100 - 60 = 40 are democrats).

We extract a random sample of 30 senators and we want to answer this question:

What is the probability that 10 senators in the sample are republicans (and of course, 30 - 10 = 20 democrats)?

The answer using the h-g distribution is:

\large \frac{\binom{60}{10}\binom{100-60}{30-10}}{\binom{100}{30}}=\frac{\binom{60}{10}\binom{40}{20}}{\binom{100}{30}}

Now, imagine there are 56 senators (56 lottery numbers), 6 are republicans (6 winning numbers and 50 losers), we extract a sample of 6 senators (the bettor selects 6 numbers). What is the probability that 4 senators are republicans? (What is the probability that 4 numbers are winners?).

<em>As we see, the situation is exactly the same,</em> but changing the numbers. So the answer would be

\large \frac{\binom{6}{4}\binom{56-6}{6-4}}{\binom{56}{6}}=\frac{\binom{6}{4}\binom{50}{2}}{\binom{56}{6}}

Now compute each combination separately:

\large \binom{6}{4}=\frac{6!}{4!2!}=15\\\\\binom{50}{2}=\frac{50!}{2!48!}=1225\\\\\binom{50}{6}=\frac{50!}{6!44!}=15890700

and now replace the values:

\large \frac{\binom{6}{4}\binom{50}{2}}{\binom{56}{6}}=\frac{15*1225}{15890700}=\frac{18375}{15890700}=\frac{5}{4324}

and that is it.

If the decimal expression is preferred then divide the fractions to get 0.001156337

6 0
3 years ago
In England a persons weight is commonly given in stones. One English stone is equal to 14 pounds. If an English friends tells yo
Ahat [919]
11 * 14 = 154 lbs since 11lbs=1 stone 11 stones =154lbs
3 0
3 years ago
The set of points P(0, 3), Q(2, 0), R(4, -3) are collinear and the line has a slope of _____.
vampirchik [111]

Answer:

slope = -1.5

Step-by-step explanation:

A set of three or more points are said to be collinear if they all lie on the same straight line.

We have been given the following collinear set of points;

P(0, 3), Q(2, 0), R(4, -3)

This implies that P, Q, and R lie on the same line.

The slope of a line is defined as; (change in y)/(change in x)

Using the points P and Q, the slope of the line is calculated as;

(0-3)/(2-0) = -3/2 = -1.5

7 0
3 years ago
Read 2 more answers
Other questions:
  • What is the inverse of f(x)=2x-6
    11·1 answer
  • What is the value of the expression =2 ?<br> 0<br> 2
    6·2 answers
  • Evaluate the expression for the given value of x.−4x + 7 for x = −4
    14·2 answers
  • Well what's the value of 2+3?​
    14·2 answers
  • Hi! I attached the question ​
    8·2 answers
  • Scenario Smart businesses in all industries use data to provide an intuitive analysis of how they can get a competitive advantag
    5·1 answer
  • Billy had a farm with chickens, goats and cows. He wanted to know how many animals he had altogether, so he placed them in group
    6·1 answer
  • If negative 3 is the in what is the out
    9·1 answer
  • Earthquakes are measured by the Richter scale and demonstrated by the formula R = log(A) where A measures the amplitude of the e
    14·1 answer
  • Show that a discrete metric on a vector space X≠{0} cannot be obtained from a norm (the pair (X,d) is called the discrete metric
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!