Answer:
c
Explanation:
Gas exchange. Gas exchange occurs as a result of respiration, when carbon dioxide is excreted and oxygen taken up, and photosynthesis, when oxygen is excreted and carbon dioxide is taken up. The rate of gas exchange is affected by: the area available for diffusion.
NADH and FADH2 are used in the next step of the aerobic respiration(electron transport chain) for their electrons, the energy they store in the electrons to be precise
Beets, carrots, turnips, onions, radishes, and (the odd one out) celeriac.
Complete question:
Suppose "A" is a dominant gene for the ability to taste phenylthiocarbamide and "a" is a recessive gene for the inability to taste it. Which couples could possibly have both a child who tastes it and a child who does not?
a. father AA, mother aa
b. father Aa, mother AA
c. father Aa, mother Aa
d. father AA, mother AA
Answer:
c. father Aa, mother Aa
Explanation:
According to the given information, the ability to taste phenylthiocarbamide is a dominant trait and is imparted by the allele "A". This phenotype would be expressed in both homozygous and heterozygous conditions. The non-taster phenotype would be expressed in the homozygous recessive genotypes only.
To have both taster and non-taster children, both the parents should have at least one copy of the recessive allele. Among the given options, the father with genotype Aa and the mother with genotype Aa have the possibility to have both taster and non-taster children.
Aa x Aa= 3/4 taster (1/4 AA and 1/2 Aa): 1/4 non-taster (1/4 aa)
Answer:
transcription of mRNA from DNA
small ribosomal subunit binds to mRNA
initiation complex formed with addition of large ribosomal subunit
translocation
codon recognition (non-initiating site)
peptide bond formation
ribosome reads a stop codon
polypeptide chain is released from the P site
ribosomal subunits dissociate
Explanation:
The above describes the process of translation in the ribosome. After transcription of DNA to mRNA, the mRNA is taken to the ribosome to undergo translation, here the mRNA binds to the small ribosomal subuits and to other initiation factors; binding at the mRNA binding site on the small ribosomal subunit then the Large ribosomal subunits joins in.
Translation begins (codon recognition; initiating site) at the initiation codon AUG on the mRNA with the tRNA bringing its amino acid (methionine in eukaryotes and formyl methionine in prokaryotes) forming complementary base pair between its anticodon and mRNA's AUG start codon. Then translocation occurs with the ribosome moving one codon over on the mRNA thus moving the start codon tRNA from the A site to the P site, then codon recognition occurs (non-initiating site again) which includes incoming tRNA with an anticodon that is complementary to the codon exposed in the A site binds to the mRNA.
Then peptide bond formation occurs between the amino acid carried by the tRNA in the p site and the A site. When the ribosome reads a stop codon, the process stops and the polypeptide chain produced is released and the ribosomal subunits dissociates.