Answer:
15.39% of the scores are less than 450
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What percentage of the scores are less than 450?
This is the pvalue of Z when X = 450. So



has a pvalue of 0.1539
15.39% of the scores are less than 450
Hope this helps. Let me know if you have more questions.
Answer:
well well well
Step-by-step explanation:
dont cheat on live classwork pls
The difference between 11.0 and 12.5 is 1.5 and same with 12.5 and 14.0, so 1.5 is what the hair increases by every THREE months but if you want to find PER month, you are going to divide 1.5 by those 3 months to get .5 inches per month, so your slope will be 1/2
Answer:

Step-by-step explanation:
The relevant rule of exponents is ...
(a^b·c^d)^e = a^(be)·c^(de)
Then ...
(m^(5/4)·n^(-4/5))^(7/3) = m^(5/4·7/3)·n^(-4/5·7/3)
= m^(35/12)·n^(-28/15)
__
Since you want positive rational exponents, you can write this as ...
= m^(35/12)/n^(28/15)