1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashutka [201]
3 years ago
5

Parallelogram CDEF is formed inside of rectangle AEBC to create triangle ADC and triangle EBF as shown in the model below.

Mathematics
1 answer:
o-na [289]3 years ago
5 0

Answer:

Step-by-step explanation:

You might be interested in
What number has 62 hundreds and 5 tens
fomenos

Answer:

6250

Step-by-step explanation:

Definition of the question

6 0
3 years ago
Read 2 more answers
Evaluate the integral, show all steps please!
Aloiza [94]

Answer:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x=\dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x

Rewrite 9 as 3²  and rewrite the 3/2 exponent as square root to the power of 3:

\implies \displaystyle \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x

<u>Integration by substitution</u>

<u />

<u />\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}

\textsf{Let }x=3 \sin \theta

\begin{aligned}\implies \sqrt{3^2-x^2} & =\sqrt{3^2-(3 \sin \theta)^2}\\ & = \sqrt{9-9 \sin^2 \theta}\\ & = \sqrt{9(1-\sin^2 \theta)}\\ & = \sqrt{9 \cos^2 \theta}\\ & = 3 \cos \theta\end{aligned}

Find the derivative of x and rewrite it so that dx is on its own:

\implies \dfrac{\text{d}x}{\text{d}\theta}=3 \cos \theta

\implies \text{d}x=3 \cos \theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned}\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x & = \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x\\\\& = \int \dfrac{1}{\left(3 \cos \theta\right)^3}\:\:3 \cos \theta\:\:\text{d}\theta \\\\ & = \int \dfrac{1}{\left(3 \cos \theta\right)^2}\:\:\text{d}\theta \\\\ & =  \int \dfrac{1}{9 \cos^2 \theta} \:\: \text{d}\theta\end{aligned}

Take out the constant:

\implies \displaystyle \dfrac{1}{9} \int \dfrac{1}{\cos^2 \theta}\:\:\text{d}\theta

\textsf{Use the trigonometric identity}: \quad\sec^2 \theta=\dfrac{1}{\cos^2 \theta}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta = \dfrac{1}{9} \tan \theta+\text{C}

\textsf{Use the trigonometric identity}: \quad \tan \theta=\dfrac{\sin \theta}{\cos \theta}

\implies \dfrac{\sin \theta}{9 \cos \theta} +\text{C}

\textsf{Substitute back in } \sin \theta=\dfrac{x}{3}:

\implies \dfrac{x}{9(3 \cos \theta)} +\text{C}

\textsf{Substitute back in }3 \cos \theta=\sqrt{9-x^2}:

\implies \dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Learn more about integration by substitution here:

brainly.com/question/28156101

brainly.com/question/28155016

4 0
2 years ago
Box 1 measures 6cm in width, 12cm in length, and 4cm in height. The height is doubled to 8cm to produce a larger box, Box 2 Whic
arlik [135]

Step-by-step explanation:

i don't know but i think this is it

The height is doubled to 8cm to produce a larger box, Box 2 Which phrase accurately describes the volume of Box 2

6 0
3 years ago
What is the following product? Sqr5x^8y^2 sqr10x^3 sqr12y
PSYCHO15rus [73]

Step-by-step explanation:

\sqrt{5 {x}^{8} {y}^{2}  }  \times  \sqrt{10 {x}^{3} } \times  \sqrt{12y}   \\  \\  =   {x}^{4} y \sqrt{5}  \times x \sqrt{10x}  \times 2 \sqrt{3y}  \\  \\  = 2 {x}^{5} y \sqrt{5 \times 10x \times 3y}  \\  \\  =  2 {x}^{5} y \sqrt{5 \times 5 \times 2x \times 3y}  \\  \\ =  2 {x}^{5} y  \times 5\sqrt{ 2x \times 3y}   \\  \\  = 10 {x}^{5} y \sqrt{6xy}  \\

4 0
4 years ago
Find the sum of fourteen and eight tenths and 276.93
vitfil [10]

Answer:

299.03

Step-by-step explanation:

8 0
4 years ago
Other questions:
  • Help plz. I'll mark brainliest
    15·1 answer
  • Christina bought a purse for $29.95 and x belts for $3.99 each. Which of the following expressions shows the total amount of mon
    9·2 answers
  • What are three rational numbers between 0.2 and 0.3 (one must be a fraction)?
    6·2 answers
  • 8x+4(4x-3)=4(6x+4)-4
    6·1 answer
  • Pls help me i have to have assignments by 11:00pm so pls help me
    5·2 answers
  • 4x - 6 = 30 can you solve it
    8·1 answer
  • Can 65536 be simplified to the 2nd power if so what is it?
    6·2 answers
  • Find the Area of the Shaded Region.
    8·1 answer
  • 4(a+x)-b=16 solve for the variable x (pls help me)
    10·2 answers
  • X2 -2x -24=0 is equivalent to<br><br> Answer(S):
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!