Answer:
(-1,0)
Step-by-step explanation:
Point B is located one position to the left on the x-axis resulting in a negative x-value in the coordinate pair, and Point B is located 0 units up on the graph resulting in a y-value of 0. Therefore, (-1,0) are the coordinates.
Answer:
La persona está a 5 kilómetros con respecto al punto de partida.
Step-by-step explanation:
Considérese que la dirección norte coincide con el semieje +y y que la dirección este coincide con el semieje +x. A continuación, obtenemos las formas vectoriales equivalentes de cada afirmación:
(i) Una persona camina 7 kilómetros hacia el norte:
![\vec r_{1} = 7\,\hat{j}\,[km]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B1%7D%20%3D%207%5C%2C%5Chat%7Bj%7D%5C%2C%5Bkm%5D)
(ii) Después 3 kilómetros hacia el este:
![\vec r_{2} = 3\,\hat{i}\,[km]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B2%7D%20%3D%203%5C%2C%5Chat%7Bi%7D%5C%2C%5Bkm%5D)
(iii) Y luego, 3 kilómetros hacia el sur:
![\vec r_{3} = -3\,\hat{j}\,[km]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B3%7D%20%3D%20-3%5C%2C%5Chat%7Bj%7D%5C%2C%5Bkm%5D)
El vector resultante de desplazamiento se construye a partir de la siguiente suma de vectores:
(1)
![\vec R = 3\,\hat{i} + 4\,\hat{j}\,[km]](https://tex.z-dn.net/?f=%5Cvec%20R%20%3D%203%5C%2C%5Chat%7Bi%7D%20%2B%204%5C%2C%5Chat%7Bj%7D%5C%2C%5Bkm%5D)
Asumiendo que la distancia coincide con el desplazamiento resultante, calculamos la distancia con respecto al punto de partida mediante el Teorema de Pitágoras:


La persona está a 5 kilómetros con respecto al punto de partida.
Answer:
5
Step-by-step explanation:
first multiply 3 by 7 as 3x7=21
again find the square of 4 as 4^2=16
finally, subtract 16 from 21 as 21-16= 5
Answer:
In order to find the variance we need to calculate first the second moment given by:
And the variance is given by:
![Var(X) = E(X^2) +[E(X)]^2 = 23.36 -[4.74]^2 = 0.8924](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20%2B%5BE%28X%29%5D%5E2%20%3D%2023.36%20-%5B4.74%5D%5E2%20%3D%200.8924)
And the deviation would be:

Step-by-step explanation:
Previous concepts
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete.
The variance of a random variable X represent the spread of the possible values of the variable. The variance of X is written as Var(X).
Solution to the problem
For this case we have the following distribution given:
X 3 4 5 6
P(X) 0.07 0.4 0.25 0.28
We can calculate the mean with the following formula:

In order to find the variance we need to calculate first the second moment given by:

And the variance is given by:
![Var(X) = E(X^2) +[E(X)]^2 = 23.36 -[4.74]^2 = 0.8924](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20%2B%5BE%28X%29%5D%5E2%20%3D%2023.36%20-%5B4.74%5D%5E2%20%3D%200.8924)
And the deviation would be:

Answer:
20
Step-by-step explanation: