It depends on what variable you are tying to solve for first. Say you are trying to solve for x first and then y on the first problem you wrote.
In substitution you solve one of the equations for example with
6x+2y=-10
2x+2y=-10
you solve 2x+2y=-10 for x
2x+2y=-10
-2y = -2y (what you do to one side of the = you do to the other)
2x=-10-2y (to get the variable by its self you divide the # and the variable)
/2=/2 (-10/2=-5 and -2y/2= -y or -1y, they are the same either way)
x=-5-y
now you put that in your original equation that you didn't solve for:
6(-5-y)+2y=-10 solve for that
-30-6y+2y=-10 combine like terms
-30-4y=-10 get the y alone and to do this you first get the -30 away from it
+30=+30
-4y=20 divide the -4 from each side
/-4=/-4 (20/-4=-5)
y=-5
now the equation you previously solved for x can be solved for y.
x=-5-y
x=-5-(-5) a minus parenthesis negative -(- gives you a positive
-5+5=0
x=0
and now we have solved the problem. x=0 and y=-5
Answer:
A
Step-by-step explanation:

Expand parentheses:

Move all y's to one side and numbers to the other:

Divide both sides by -6. Since you are dividing both sides by a negative number, you need to flip the comparator:

Hope this helps!
This is an example of "a stratified sample".
<u>Answer:</u> Option B
<u>Explanation:</u>
A group-based sampling process that can be divided into subpopulations. For statistical studies, testing of each subpopulation separately may be useful if subpopulations within a total population differ, thus understood as "Stratified sampling".
One might, for instance, divide a adults sample into subgroups in terms of age, like 18 to 29, 30 to 39, 40 to 49, 50–59 etc with decided age difference as needed. A stratified sample may be more accurate than an easy sample of the similar size by random. As it offers more accuracy, a stratified sample sometimes involves a smaller sample, saving money.