Answer:
Word problem 3
Step-by-step explanation:
Word Problem one is a subtraction problem since Felicia is giving away two marbles to Lucas. Word Problem two is a division problem since Felicia is evenly dividing the number of marbles she has into two bags. Word Problem three is a multiplication problem because Ryan has two times as many marbles that Felicia does. Word Problem four is an addition problem because she found two more marbles while she already has eight marbles. Keywords for subtraction word problems are: fewer than, decrease, take away, less than, minus, difference, change, lost reduced, and subtract. Keywords for division word problems are: As much, cut up, groups, equally, sharing, half, how many in each, parts, per percent, quotient, ratio, and separated. Keywords for multiplication word problems are: double, every, factor, increased, multiplied product, times, and tripled.
3(x-8)=12
I got this equation since there are three of the "x-8" sections that add up to the twelve length bar above
Answer: B
<u>Step-by-step explanation:</u>
2x - 3y = -7 → 2(2x - 3y = -7) → 4x - 6y = -14
-4x + 6y = -10 → 1(-4x + 6y = -10) → <u>-4x + 6y</u> = <u>-10 </u>
0 = -24
FALSE
Since this makes a false statement, there are no solutions
Yes, we can obtain a diagonal matrix by multiplying two non diagonal matrix.
Consider the matrix multiplication below
![\left[\begin{array}{cc}a&b\\c&d\end{array}\right] \left[\begin{array}{cc}e&f\\g&h\end{array}\right] = \left[\begin{array}{cc}a e+b g&a f+b h\\c e+d g&c f+d h\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7De%26f%5C%5Cg%26h%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%20e%2Bb%20g%26a%20f%2Bb%20h%5C%5Cc%20e%2Bd%20g%26c%20f%2Bd%20h%5Cend%7Barray%7D%5Cright%5D%20)
For the product to be a diagonal matrix,
a f + b h = 0 ⇒ a f = -b h
and c e + d g = 0 ⇒ c e = -d g
Consider the following sets of values

The the matrix product becomes:
![\left[\begin{array}{cc}1&2\\3&4\end{array}\right] \left[\begin{array}{cc}\frac{1}{3}&-1\\-\frac{1}{4}&\frac{1}{2}\end{array}\right] = \left[\begin{array}{cc}\frac{1}{3}-\frac{1}{2}&-1+1\\1-1&-3+2\end{array}\right]= \left[\begin{array}{cc}-\frac{1}{6}&0\\0&-1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%262%5C%5C3%264%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B3%7D%26-1%5C%5C-%5Cfrac%7B1%7D%7B4%7D%26%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B2%7D%26-1%2B1%5C%5C1-1%26-3%2B2%5Cend%7Barray%7D%5Cright%5D%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-%5Cfrac%7B1%7D%7B6%7D%260%5C%5C0%26-1%5Cend%7Barray%7D%5Cright%5D)
Thus, as can be seen we can obtain a diagonal matrix that is a product of non diagonal matrices.