Answer:
x = 14.4
Step-by-step explanation:
x is sin(angle 24/30)×24
how do we get the angle at 24/30 ?
by using the extended Pythagoras for baselines opposite other than 90 degrees.
c² = a² + b² - 2ab×cos(angle opposite of c)
in our example the angle 24/30 is opposite of the side 18.
so,
18² = 24² + 30² - 2×24×30×cos(angle 24/30)
324 = 576 + 900 - 1440×cos(angle 24/30)
324 = 1476 - 1440×cos(angle 24/30)
1440×cos(angle 24/30) = 1152
cos(angle 24/30) = 1152/1440 = 576/720 = 288/360 = 144/180 = 72/90 = 36/45 = 12/15 = 4/5
angle 24/30 = 36.9 degrees
x = sin(36.9) × 24 = 14.4
3/8 is equivalent to 0.375.
Answer:
![[6\frac{1}{6},6\frac{1}{3},6\frac{1}{2},6\frac{2}{3},6\frac{5}{6}]](https://tex.z-dn.net/?f=%5B6%5Cfrac%7B1%7D%7B6%7D%2C6%5Cfrac%7B1%7D%7B3%7D%2C6%5Cfrac%7B1%7D%7B2%7D%2C6%5Cfrac%7B2%7D%7B3%7D%2C6%5Cfrac%7B5%7D%7B6%7D%5D)
Step-by-step explanation:
we have the compound inequality

where
x is a mixed number
so
The solution for the compound inequality are the numbers
![[6\frac{1}{6},6\frac{2}{6},6\frac{3}{6},6\frac{4}{6},6\frac{5}{6}]](https://tex.z-dn.net/?f=%5B6%5Cfrac%7B1%7D%7B6%7D%2C6%5Cfrac%7B2%7D%7B6%7D%2C6%5Cfrac%7B3%7D%7B6%7D%2C6%5Cfrac%7B4%7D%7B6%7D%2C6%5Cfrac%7B5%7D%7B6%7D%5D)
Simplify the numbers
![[6\frac{1}{6},6\frac{1}{3},6\frac{1}{2},6\frac{2}{3},6\frac{5}{6}]](https://tex.z-dn.net/?f=%5B6%5Cfrac%7B1%7D%7B6%7D%2C6%5Cfrac%7B1%7D%7B3%7D%2C6%5Cfrac%7B1%7D%7B2%7D%2C6%5Cfrac%7B2%7D%7B3%7D%2C6%5Cfrac%7B5%7D%7B6%7D%5D)
Answer:
15
proof on pic......................
Answer:
Sarkis cannot draw a triangle with these side lengths.
Step-by-step explanation:
Sarkis cannot draw a triangle with these side lengths.