Answer:
<h2>50m/s^2</h2>
Explanation:
Step one:
given data
initial velocity u= 0m/s since the ball is at rest
time of contact t= 0.3s
final velocity v=15m/s
Required
acceleration a
from the first law of motion
v=u+at
substitute our given data
15=0+a*0.3
15=0.3a
divide both sides by 0.3
a=15/0.3
a=50m/s
<u>The average acceleration is 50m/s^2</u>
Answer:
C. Both a and b
Explanation:
Firstly, persons and objects in a moving plane as described in this question, are moving at the same speed as the plane even if there is no individual movement of these objects.
However, this question describes a person sitting still in a moving plane. This means that;
- The person is motionless in relation to everything in the plane i.e the person is not moving even if other things in the plane are.
- The person is in motion compared to everything on the ground i.e. the person is moving at the same speed as the plane, hence, in comparison with the ground, the person is moving.
Therefore, options A and B are correct
Answer: 0.5 seconds or 2.625 seconds
Explanation:
At t = 0, The ball is 4 ft above the ground.
The height of the football varies with time in the following way:
s(t) = -16 t² + 50 t + 4
we need to find the time in which the height would of the football would be 25 ft:
⇒25 = -16 t² + 50 t + 4
we need to solve the quadratic equation:
⇒ 16 t² - 50 t + 21 = 0

⇒ t = 0.5 s or 2.625 s
Therefore, at t = 0.5 s or 2.625 s, the football would be 25 ft above the ground.
Answer:
In a two particle system, the center of mass lies on the center of the line joining the two particles.