Answer:
E. None of the above
Step-by-step explanation:
We know that 1/8 is the same as 1÷8 Then using Long Division for divided by 8 gives us 0.125
Answer:
2
Step-by-step explanation:
The best mechanical advantage you can get is obtained by pushing the door at its edge. If the door's center of mass is halfway from the hinge to the edge, then the advantage you get (in terms of force reduction) is ...
1/(1/2) = 2
Answer:
cndjxnn
Step-by-step explanation:
vncnfxjdncnnxxjjxnxxnjxxjdnxnxjxj, x
The solution is the point of intersection between the two equations.
Assuming you have a graphing calculator or a program to lets you graph equations (I use desmos) you simply put in the equetions and note down the coordinates of the point of intersection.
In the graph the first equation is in blue and the second in red.
The point of intersection = the solution = (-6 , -1)
If you dont have access to a graphing calculator you could draw the graphs by hand;
1) Draw a table of values for each equation; you do this by setting three or four values for x and calculating its image in y (you can use any values of x)
y = 0.5 x + 2 (Im writing 0.5 instead of 1/2 because I find its easier in this format)
x | y
-1 | 1.5 * y = 0.5 (-1) + 2 = 1.5
0 | 2 * y = 0.5 (0) + 2 = 2
1 | 2.5 * y = 0.5 (1) + 2 = 2.5
2 | 3 * y = 0.5 (2) + 2 = 3
y = x + 5
x | y
-1 | 4 * y = (-1) + 5 = 4
0 | 5 * y = (0) + 5 = 5
1 | 6 * y = (1) + 5 = 6
2 | 7 * y = (2) + 5 = 7
2) Plot these point on the graph
I suggest to use diffrent colored points or diffrent kinds of point markers (an x or a dot) to avoid confusion about which point belongs to which graph
3) Using a ruler draw a line connection all the dots of one graph and do the same for the other
4) The point of intersection is the solution
Answer:
Minimum value of function
is 63 occurs at point (3,6).
Step-by-step explanation:
To minimize :

Subject to constraints:

Eq (1) is in blue in figure attached and region satisfying (1) is on left of blue line
Eq (2) is in green in figure attached and region satisfying (2) is below the green line
Considering
, corresponding coordinates point to draw line are (0,9) and (9,0).
Eq (3) makes line in orange in figure attached and region satisfying (3) is above the orange line
Feasible region is in triangle ABC with common points A(0,9), B(3,9) and C(3,6)
Now calculate the value of function to be minimized at each of these points.

at A(0,9)

at B(3,9)

at C(3,6)

Minimum value of function
is 63 occurs at point C (3,6).