V1=(-2,4)=(x1,y1)→x1=-2, y1=4
V2=(4,0)=(x2,y2)→x2=4, y2=0
V3=(2,-3)=(x3,y3)→x3=2, y3=-3
V4=(x4,y4)→x4=?, y4=?
V1-V2
dx=x2-x1=4-(-2)=4+2→dx=6
dy=y2-y1=0-4→dy=-4
V4-V3
dx=x3-x4→6=2-x4
Solving for x4:
6=2-x4→6-2=2-x4-2→4=-x4→(-1)(4=-x4)→-4=x4→x4=-4
dy=y3-y4→-4=-3-y4
Solving for y4:
-4=-3-y4→-4+3=-3-y4+3→-1=-y4→(-1)(-1=-y4)→1=y4→y4=1
V4=(x4, y4)→V4=(-4, 1)
Answer: The coordinates of the fourth vertex are (-4,1)
Answer:
-1/8
Step-by-step explanation:
lim x approaches -6 (sqrt( 10-x) -4) / (x+6)
Rationalize
(sqrt( 10-x) -4) (sqrt( 10-x) +4)
------------------- * -------------------
(x+6) (sqrt( 10-x) +4)
We know ( a-b) (a+b) = a^2 -b^2
a= ( sqrt(10-x) b = 4
(10-x) -16
-------------------
(x+6) (sqrt( 10-x) +4)
-6-x
-------------------
(x+6) (sqrt( 10-x) +4)
Factor out -1 from the numerator
-1( x+6)
-------------------
(x+6) (sqrt( 10-x) +4)
Cancel x+6 from the numerator and denominator
-1
-------------------
(sqrt( 10-x) +4)
Now take the limit
lim x approaches -6 -1/ (sqrt( 10-x) +4)
-1/ (sqrt( 10- -6) +4)
-1/ (sqrt(16) +4)
-1 /( 4+4)
-1/8
1. Two of the main identities used in trigonometry for right triangles (Triangles that have an angle of 90°) are: Sine (Sin) and Cosine (Cos).
Sin x°=Opposite/Hypotenuse
Cos x°=Adjacent/Hypotenuse
2. The inverse of Sinx° is Cosec x°, then:
Cosec x°=1/Sin x°
3. The inverse of Cos x° is Sec x°, then:
Sec x°=1/Cos x°
4. Keeping this on mind, you have:
Cosc x°=Hypotenuse/Opposite
Sec x°=Hypotenuse/Adjacent
5. Therefore, the correct answer is:
The third option: Cosec x°=Hypotenuse/Opposite.